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Abstract
There are a large class of applications, notably those in high-
performance computation (HPC), for which parallelism is nec-
essary for performance, not expressiveness. Such applications are
typically determinate and have no natural notion of deadlock. Un-
fortunately, today’s dominant HPC programming paradigms (MPI
and OpenMP) are based on imperative concurrency and do not
guarantee determinacy or deadlock-freedom. This substantially
complicates writing and debugging such code.

We present a new concurrent model for mutable variables, the
clocked final model, CF, that guarantees determinacy and deadlock-
freedom. CF views a mutable location as a monotonic stream to-
gether with a global stability rule which permits reads to stutter
(return a previous value) if it can be established that no other activ-
ity can write in the current phase. Each activity maintains a local
index into the stream and advances it independently as it performs
reads and writes. Computation is aborted if two different activities
write different values in the same phase.

This design unifies and extends several well-known determinate
programming paradigms: single-threaded imperative programs, the
“safe asynchrony” of [31], reader-writer communication via im-
mutable variables, Kahn networks, and barrier-based synchroniza-
tion. Since it is predicated quite narrowly on a re-analysis of muta-
ble variables, it is applicable to existing sequential and concurrent
languages, such as Jade, Cilk, Java and X10. We present a formal
operational model for a specific CF language, MJ/CF, based on the
MJ calculus of [15]. We present an outline of a denotational seman-
tics based on a connection with default concurrent constraint pro-
gramming. We show that CF leads to a very natural programming
style: often an “obvious” shared-variable formulation provides the
correct solution under the CF interpretation. We present several ex-
amples and discuss implementation issues.

[copyright notice will appear here]

1. Introduction and motivation
For high performance computation, parallelism is a necessary evil –
needed for scalability and performance. The algorithms for a large
number of problems are determinate and have no natural notion
of deadlock. Yet these programs are most commonly expressed in
programming models – shared variable concurrency (OpenMP, [1])
and message passing (MPI, [30]) – that make indeterminacy and
deadlock all too possible.

This problem is exacerbated in new programming models for
high performance languages, such as X10 [7, 26], Titanium [33],
Co-Array Fortran (CAF,[22]), UPC [11] and Global Arrays [20]
which present an integrated model for shared variables and mes-
sage passing, based on a partitioned global address space model.
In this model computations scattered across multiple nodes (e.g.
of a single high-performance computer, or a cluster) are viewed
logically as running in a common address space, which is lumped
into “places” (which host activities with affinity to local data). Ag-
gregate objects (such as arrays) may be distributed across multiple
places. Message passing becomes a mechanism for the implemen-
tation of remote reads and writes.

Consider the central problem of imperative concurrency. A lo-
cation L has an initial value v0. An activity A1 (the writer) wishes to
write a value v1 into this location. Another activity A2 (the reader)
wishes to read the value of the location. How is this read-write race
to be resolved determinately (i.e. in a manner independent of the
scheduler)? Similarly, if A1 and A′2 wish to write to the same loca-
tion, how is this write-write conflict to be resolved?

We consider some paradigmatic examples of concurrent imper-
ative programs which show how reads and writes may be organized
to exhibit determinacy and deadlock-freedom

EXAMPLE 1 (CANNON’S ALGORITHM). Consider Canon’s algo-
rithm for computing a×b where a and b are N×N matrices. First,
the ith row of a is left-shifted by i and the jth column of b is up-
shifted by j. Then the following computation is performed N times:
the value a[i, j]×b[i, j] is summed into c[i, j] and each a row is left-
shifted once and each b column is right shifted one. The following
program, written in a Java-like notation is intended to capture this
specification. Here foreach spawns an activity in parallel for each
pair in the given set ([0:N-1,0:N-1]), and finish causes the ini-
tiating activity to wait for their termination. for iterates through its
elements in sequence.
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1: void cannon (double[] c, double[] a, double[] b) {
2: finish foreach (int i,j in [0:N-1,0:N-1]) {
3: a[i,j] = a[i, (j+i) % N];
4: b[i,j] = b[(i+j) % N, j];
5: }
6: for (int k in [0:N-1]) {
7: finish foreach (int i,j:[0:N-1,0:N-1]) {
8: c[i,j] = c[i,j] + a[i,j] * b[i,j];
9: a[i,j] = a[i, (j+1) % N];
10: b[i,j] = b[(i+1) % N, j];
11: }
12: }
13: }

The program exhibits parent-child communication. Each activ-
ity spawned on line 2 processes a slice of the two arrays (reading
2 cells and writing 2 cells). The parent waits for these to finish. At
line 6 it knows that the shifting has been accomplished, thus data
operated on by children activities is now available to the parent.
On line 7 it again spawns activities to process other slices of the
arrays. On termination of these tasks, the matrix multiplication has
been accomplished – the parent activity can access all elements of
the array c, knowing that none of the activities it had spawned are
mutating it.

This specification exhibits read/write conflicts. On Line 3, it
is intended that the value of a[i,(j+i)%N] is the value before
the concurrent assignment. A scheduler must not inadvertently
schedule the read after the corresponding write. Similarly on lines
8,9, and 10. If these dependencies are respected (e.g. as in Fortran
90, or with the HPF FORALL construct), the program terminates
determinately, and without deadlock. As it turns out, this program
will operate correctly in the model being proposed in this paper.

EXAMPLE 2 (N-PARTICLE). Given N particles (e.g. molecules)
scattered in 3-space and subjet to various mutual forces (e.g. gravi-
tational, electro-static, ionic), the problem is to determine the time
evolution of the positions of the particle, given their mass, charge
(and other constants) and their initial position. Typically N is large.

While far more sophisticated techniques are used in practice
(e.g. Barnes-Hut), we may describe a schematic solution as fol-
lows. The points are scattering among processes and computation
progresses in a sequence of synchronized phases. In each phase
each particle computes the force incident on it at the current time
instant, based on the current position of the other particles. This de-
termines the position of particle at the next time instant. When (and
only when) each process has computed the position of all particles
assigned to it, all processes may move on to the next phase, after
redistributing the particles among the processes as necessary (e.g.
for load-balancing).

This example illustrates the use of mutable arrays operated on in
parallel by multiple processes, using barrier-based synchronization
for determinacy. We think of the array as being indexed by an
integer-valued clock. An activity writes a location in phase i of the
clock only when all activities have finished writing in phase i− 1.
An activity in phase i reads values produced in phase i− 1. Thus
there are no read-write conflicts. Only one activity is responsible
for writing into a specific array location, hence there are no write-
write conflicts.

Barrier-based techniques are pervasive in high performance
computing. Other examples include relaxation algorithms (e.g. Ja-
cobi) used to solve partial differential equations by applying sten-
cils on array cells in phases. In each phase, an array element is
updated based on the values of neighboring array elements speci-
fied by the stencil.

EXAMPLE 3 (PIPELINED WAVEFRONTS, UMT2K). The ASCI Pur-
ple benchmark, UMT2K, is a deterministic photon transport code
for unstructured meshes, based on OpenMP and MPI that exhibits
pipelined wavefront computation. Each cell in the mesh receives
values from cells “upstream” in the flow (as determined by the
mesh geometry), performs computations based on information
stored at the cell, and propagates new values to cells “downstream”.
Multiple cells are allocated to a processor, which remains inactive
until the edge of a sweep enters cells on that processor. Typically,
multiple sweeps are active at any given time.

Representing the unstructured geometry requires the program-
ming language be able to represent an arbitrary object reference
graph. The communication pattern of the wavefront can be easily
represented by dataflow. Thus, a language supported (determinis-
tic) dataflow over an arbitrary graph can be used to solve this prob-
lem.

HPC computations are often concerned with parallel reduction
operations on (sections of) arrays. These require the scheduling of
concurrent associative commutative operations, as illustrated by the
following example:

EXAMPLE 4 (HISTOGRAM). The need for commutative write op-
erations may be illustrated with the classic histogram problem.
Given an integer array A containing values from 1 to n the prob-
lem is to accumulate in parallel in B[i] the number of indices in A
which contain the value i. This may be specified quite simply as:

1: int[] histogram(int[] A, n) {
2: final int[] B = new int[1:n];
3: finish foreach(int i in A) B[A[i]]++;
4: return B;
5: }

Note that according to this code multiple activities may simulta-
neously perform a commutative update operation on a shared loca-
tion B[j]. (This program will turn out to run correctly in the model
being proposed in this paper.)

Criteria. We are interested in developing a theory of determinate,
mutable concurrency. Such a theory must be:

Semantically clean. Computations must be guaranteed to be deter-
minate and deadlock-free

Expressive. The framework must work well within an object-
oriented context.

It must handle the richness of Sequential Java/X10 com-
putations. Thus, it must be possible to create arbitrary ob-
ject reference graphs, while permitting their manipulation
by multiple asynchronous activities.
It must permit the same location to be used repeatedly for
communication between multiple reader and writer activi-
ties.
It must handle barrier-based computations, over mutable
arrays (cf. N-particle simulations). Read/write operations of
array elements should take constant time.
It must handle synchronous and asynchronous data flow
networks (cf. wavefront computations).

General: It must be applicable to arbitrary imperative program-
ming languages.

As Steele points out [31] it may not be possible to design languages
that guarantee determinacy and deadlock-freedom statically while
still being expressive. Therefore we shall not require that these
conditions be established statically. Rather we are interested in
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programming models that will detect violations from determinacy
dynamically and abort the computation.

1.1 Basic paradigm: the clocked final model
There are some simple answers to this problem that are unfortu-
nately not very general. One answer [31] is that concurrent ac-
tivities may not access the same location – hence there are no
conflicts. The only activities that may coordinate with each other
are parent/child activities, at process fork and join. In such a lan-
guage two operations on a location that are not causally related
must be commutative. [31] presents the design of a runtime checker
which catches violation of this property and terminates computa-
tion abruptly.

This technique is simple and attractive but limited in scope.
Another idea is to support immutable communication. An activ-
ity communicates with another by writing a value into a shared
location and declaring that the variable can no longer be mutated.
Reads block until a value is written (if ever). There are two ma-
jor problems with this idea. First, a location can be used only once
for communication. A new location must be created for subsequent
communication, thus leading to stream-based languages and pre-
cluding efficient reuse of the same location for repeated commu-
nication. Second, such a pattern can easily lead to deadlock, for
instance, with a cyclic communication graph.

The CF computation model. We propose a simple answer to this
problem, which subsumes and generalizes the above two cases.

The essence of imperative programming, the mutable location,
provides two guarantees: (1) a read operation returns the value
currently in the location, (2) the value in a location does not change
unless there is a write. Together, these imply that a read returns the
value written by the last write.

This view works well in sequential programming, where the
single thread of control ensures that at most one writer or reader
is active. With multiple threads of control, read-write and write-
write conflicts can arise, as discussed above. Below by a “reader”
(“writer”) we shall mean an activity that reads (writes). (An activity
may both read and write.)

We propose that every mutable location be associated with
a clocked stream of (immutable, “final”) values. The stream is
initialized at index 0 with the initial value of the variable. Since
a location may have multiple readers and writers, each stream may
have multiple readers and writers. (The point to point channels of
Kahn networks are the special case with one reader and one writer.)
Every activity is equipped with a world view, a map from object ids
to object views, which are maps from fields of the object to read-
and write-indices in the stream associated with the field.

An activity’s world view is advanced based solely on the opera-
tions performed by the activity as follows:

RULE 5 (READ/WRITE). Initially, the read-index r for a field is
set to 0 and the write-index w to 1. Always r = w or r = w− 1. A
read returns the value at r; r is incremented and if r = w then so is
w. A write writes into v[w]; w is incremented and if r = w−1 then
so is r.

Separate indices for each reader resolves read/read conflicts.
Read/write conflicts are resolved by making reads block if the
stream is not long enough. A write into a stream adds to the stream
at the index of the writer. Write/write conflicts are resolved by the
single-assignment rule for each index of the stream: if the write is
incompatible with the already existing value (if any), computation
aborts globally. Thus as soon as a value is written at an index i,
it can be read by another activity at that index (without waiting for
other activities to write). This scheme can be generalized to support
“commutative writes”, Section 2.

EXAMPLE 6 (CANNON, REVISITED). Consider the read/write con-
flict on Line 3 of Example 1. The activity writing into a[i,j]
reads the value of a[i, (j+i)% N] at index 0 (the initial value),
and writes into a[i,j] at index 1. On termination the index for
a[i,j] is (1,2) and a[i, (j+i)% N] is (1,1). Thus the con-
flict is resolved in the desired fashion. Similarly for the conflicts on
Lines 8 – 10.

Such a stream approach is general enough to accomodate im-
mutable locations, or even the incremental construction of abritrary
higher order value in a purely functional language (cf. work on
game semantics [2, 17]). However, it is inadequate to handle muta-
tion: in particular, it does not address the “default assumption” (2)
above. This can be seen quite simply: if a stream is of length one,
the second read of a reader blocks, so the following program blocks
at Line 3:

1: x=2;
2: y1=x;
3: y2=x;

Thus, the stream approach is not expressive enough: it does not
even encompass sequential first-order imperative programming.

Stability. Our key insight is to identify program points where the
default (2) can be safely enforced without compromising determi-
nacy. We identify situations (stabilities) where the system can per-
form a phantom write extending a stream by one index by copying
the value at the last index of the stream. (A read operation that re-
turns a value written by a phantom write is said to stutter.) Clearly,
to avoid races this can be done only if no writer can write to this
index. Note that this immediately gives us sequential imperative
programming: in a sequential context, Line 3 is a stable deadlock
point in the program above (no activity can write into the stream
for x). So this rule permits us to copy the value 2 from the first in-
dex of stream for x into the second, giving us exactly the required
behavior.

The solution permits different groups of activities to progress
at different, self-timed rates. Assume that an activity A organizes
its computation in episodes. An episode is sequences of writes
followed by a sequence of reads. If positive information is available
in the current phase (i.e. some activity has performed a write) these
reads return immediately. As far as other activities are concerned,
A is busy and may produce writes on a set of locations L, hence
any attempt to infer that A is not going to write to L must block.
Only an explicit suspension by A (through an attempt to read values
of variables in phases in which the value can not be produced by
another writer) is to be viewed as an indication that it has finished
writing in this phase. Only when all activities that can write on L
are so suspended does it become permissible to infer that L will not
be written into in this phase. Now this stability can be released by
simultaneously performing phantom writes on all the locations in
L. This is called the Stability Rule and is discussed in more detail
in Section 2.1.3.

Thus this approach prefers positive information to negative in-
formation (the absence of positive information): as long as an ac-
tivity is progressing (producing writes for some locations) it is con-
sidered as active and capable of producing writes for all locations.
Deadlock is detected and resolved determinately.

Other aspects. We briefly review other aspects of the model. The
central novel aspect of the model is the association of locations with
streams, and of activities with world views. It becomes necessary
to arrange matters so that the world views of activities can be
coordinated. The coordination of views at fork and join is handled
by:

RULE 7 (FORK/JOIN). Each activity is initialized with the world
view of its parent.
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At join points the world view of the activity is updated with the
least upper bound (lub) of the world view of the joining activity.

Intuitively, the lub applies separately to each index, and takes the
max. See Section 2 for details, and for a similar rule for lateral
communication.

EXAMPLE 8 (CANNON, AGAIN). Recall from Example 6 that on
termination of the (i,j)th activity launched at Line 2, the index
for a[i,j] is (1,2) and a[i, (j+i)% N] is (1,1). Taking lubs,
we get the index for the parent activity at Line 6 is (1,2) for every
location in a and b. The lub of all of these is (1,2). Similarly on
termination of the (i,j)th activity spawned on Line 7, the index
for a[i,j], b[i,j] and c[i,j] is (2,3) and the other two array
elements involved is (2,2). Taking the lubs at Line 11 gives the
index for all elements in a, b and c as (2,3). This process is
repeated N times. With the world view that is returned a read will
get the last value written.

Thus the program in Example 1 runs correctly in the CF pro-
gramming model.

Thus the clocked final model, CF, smoothly generalizes the
basic sequential imperative model while preserving determinacy
and deadlock-freedom. A sequential imperative program produces
the same result when executed sequentially and when executed as
a CF program. CF supports dataflow synchronization, and clock-
based synchronization, and permits the same location to be used
repeatedly and reliably for writer/reader communications.

This idea is focussed on the structure of the variables and is
not tuned to any specific collection of control constructs in the un-
derlying sequential programming paradigm. Thus, existing sequen-
tial and parallel languages can be adapted to this model by equip-
ping locations with streams, threads with world views, and reinter-
preting fork, join, read and write. Thus, one may speak of C/CF,
CAF/CF, HPF/CF, as well as Cilk/CF (Section 2.4.2), X10/CF
(Section 2.4.3)etc.

1.2 Contributions of this paper
This paper makes the following contributions:

• We propose a simple, general programming model for determi-
nate imperative concurrency, the clocked final model CF, which
satisfies the criteria for a theory of determinate imperative con-
currency proposed above.

• The model may be used as a basis for designing a determinis-
tic, deadlock-free programming language on top of any sequen-
tial imperative language. Existing parallel imperative languages
such as Cilk and X10 can be re-interpreted on top of CF “con-
servatively” (race-free programs have the same results on the
same input).

• We present a simple language MJ/CF realizing this model,
based on MJ.

• We show several paradigmatic examples can be directly ex-
pressed within this framework, and discuss implementation
considerations.

• We present a formal operational semantics for MJ/CF, estab-
lish determinacy and deadlock-freedom and outline a denota-
tional semantics.

1.3 Comparison with other work
Races are the source of non-determinacy in parallel programs [12].
The goal of work on race detection (e.g. [29, 10, 23, 32, 13,
8]) is therefore closely related to the goals of CF. Races are an
integral element of the design of data structures such as locks and
barriers, hence most research on race detection has focused on data

races [19]. These occur when data structures that are not specially
declared experience unordered conflicting access.

Our work is complementary in nature in that by design the
language guarantees a lack of races. Note however that a MJCF
program may abort because of simultaneous conflicting writes to
a location. Techniques from these papers may be used to statically
test for these anomalies.

[31] has been an inspiration for our work and presents a design
for checking when multiple concurrent activities may perform con-
flicting write operations on the same location. As discussed above,
the design is quite restrictive in that it does not permit reader/writer
communication between concurrent siblings.

[4] presents a language design that guarantees no data races.
This is accomplished by ensuring that all shared objects are
guarded by a monitor. However a program may have determinacy
races, i.e. may be indeterminate. Similarly [5] presents a statically
checkable design that is race-free but not determinate because of
the presence of arbitrary critical sections.

The work of [13, 8] on data race-checking in Cilk is discussed
in Section 2.4.2.

Rest of this paper. Next, we discuss the basic model in more
detail. We discuss several examples. We discuss implementation
considerations. We present a formal operational semantics based
on the semantics of X10 and establish determinacy and deadlock
freedom.

2. Basic paradigm
2.1 The programming model
2.1.1 Process structure
We shall make the assumption that an activity does not run in
parallel with its offspring. This assumption is not essential – and
does not curb expressiveness – but makes it easier to state certain
conditions below.

When all the activities spawned under a finish terminate, the
view of the parent activity is updated with the least upper bound
(lub) of the views of all the offspring activities at their termination.
For views vi, i < n, the domain of the lub is the union of the domains
of the vi. The object view o at each oid in the domain maps each
field f of o to the max of the read and write indices for o. f for each
view vi defined on o.

These simple rules account for parent/child communication.
What about communication between siblings? We adopt the simple
idea that a reference to an object o is written into a location by an
activity A together with the view vA(o) of o held by A. When this
location is read by an activity B, the view vB(o) is automatically
updated to the lub of vB(o) and vA(o). This guarantees that B
operates on a version of o at least as recent as the one operated
on by A.

2.1.2 Streams with a view
A configuration should be thought of as a tree of activities and a
store, recording the object reference graph (ORG), i.e. the state of
each object. Each object is modeled as a map from the fields of the
object to streams of values of the right type.

An activity should be thought of as an activation stack, the
current expression to be evaluated, together with a world view
(briefly: view). Given an object o, an object view is a map that
relates each field of o to a non-negative integer index (called the
version of the field). A world view is a partial map from object id’s
to object views.

Activities can simultaneously read and write elements in the
stream of each field, according to Rule 5. A read suspends if the
value has not yet been written into (or has only been partially writ-
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ten into by a commutative write). If the operation is a commutative
operation, and all activities which may possibly write into this in-
dex have written into it (this may require Stability detection, see be-
low), the value at this index is considered complete and any blocked
reads are resumed.

Any attempt to write two different values at an index imme-
diately aborts computation. Since scheduling decisions may affect
which of two competing activities last writes into a location, it is
not appropriate to consider the last activity to write as the culprit
and throw an exception. (This would lead to indeterminacy.)

As stated above, reads may block. This may lead to deadlock,
resolved by the Stability Rule below.

2.1.3 Progressing from a stable configuration
An activity that tries to read a value that is not yet available will
block. In order to adhere to the expectations of the imperative
model, however, the reader must be able to read a value even if
all the activities which can write to this location have decided
not to do so on this phase. When this happens, we say that the
location is part of a stability; a set of locations that can not be
written in the current phase of the clock. The stability is advanced
by performing a phantom write simultaneously on each location.
The phantom write copies into the current write index the value
of the corresponding stream at the previous index. We call this the
Stability Rule, and it causes all reads blocked on this index to stutter
and return the value of the previous phase.

The stabilities will be defined formally in terms of a set N(a),
an approximation to the set of memory locations reachable from
an activity a for writing. We shall have more to say about the
specific choice of N(a) in Section 3, but in general the choice
should be such that if a is blocked, N(a) can not shirink, and
if all the activities that can reach location l are blocked, no new
activities can be made to reach l. We will use N(a) to define a
predecessor relation among memory locations such that a location
l is a direct predecessor of location l′ if writing to location l can
cause a location l′ to unblock. This will be the case, for example,
if a l′ is in N(a) of an activity blocked on l, so writing to l will
unblock activity a which could then write to l′.

In order to insure that stabilities are in fact stable, and that
the stability rules eliminate all deadlock situations, we will require
them to satisfy the following properties.

PROPOSITION 9 (PROPERTIES OF STABILITIES). Let C be a con-
figuration of the system.

1. Let L be a stability in C. Then all activities that can write to L
in C are blocked on L.

2. Every location l′ blocking an activity will have as a predecessor
a location that is either in L or that is in the N(a) of some
activity a that is not blocked.

Additionally, stabilities should advance as they appear, which
means they should have the the following properties:

PROPOSITION 10 (INDEPENDENCE OF STABILITIES).

1. Let L be a stability in C and let C′ be obtained from C by
advancing some other stability L′, and letting the unblocked
activities evolve. Then L is a stability in C′.

2. Any two stabilities in any C are disjoint or identical.

These properties ensure that stabilities, once formed, cannot
grow or shrink, and advancing one stability does not affect others.

Stabilities should also be easy to detect efficiently. In order to
achieve this, we will chose a definition of N(.) that allows us to use
the following stability rules.

First define the (private) neighborhood of an activity a, P(a),
to be the set of locations corresponding to the local variables of a
and the locations in all those objects o which are reachable only
through locations in the neighborhood of a. Let Pd(a) be the union
of P(a′) for all activities a′ that descend from a.

RULE 11. The following rules may be used to find stabilities:

Type 1 stability. When an activity a suspends reading from loca-
tion l and l ∈ P(a), {l} is a stability.

Type 2 stability. If all the descendants of an activity a are blocked
on a set of locations L ⊂ Pd(a), and none of the children of a
satisfy this property, L is a stability.

Type 3 stability. If all activities in the current configuration are
blocked on a set L of locations, and there are no stabilities of
type 1 or 2, then L will be a stability.

2.2 The MJ/CF language
We develop an interpretation of the MJ calculus atop CF to il-
lustrate the power of the CF paradigm. A formal semantics for
MJ/CF is provided in Section 3. The core MJ calculus, de-
scribed in the appendix, includes mutable state, block structured
values and basic object-oriented features. It does not however
represent packages, import statements, interfaces, arrays, built-in
types, method overloading, static state, try/catch/throws, loops,
multi-threading. We add to core MJ the following statements.
For brevity, our sole commutative write is int multiplication.

(Field)
commutative Integer f ;

(Statement)
finish {async s1, . . .async sn}
finalize e.f
x *= e;

(Promotable exp)
new scoped C(e1, . . . ,ek)

Scoped variables Say that an object o is scoped to an activity
A if all references to o are stored either in local variables of A
or in objects that are scoped to A. If an object is scoped, then all
its locations (i.e. its fields) are scoped. The local variables of an
activity are defined to be scoped locations.

MJ/CF permits the creation of scoped objects ( new scoped
Point(i,j), and has a static type system (via scoped annotations
on variables) that can track scoped objects and guarantee that they
stay scoped. Details are routine and omitted from this extended
abstract.

stuttering. The function stuttering() returns true if the last
read performed on a global variable resulted in a stutter.

finalize L An activity may assert the statement finalize L;.
Suppose the activity’s index for L is k and the value of L at k is v.
This statement establishes the constraint that the value of L in all
phases after k is going to be v. All activities may read L in all phases
at or after k without having to wait for a stability. Any attempt by
an activity to assign a value to L different from v will cause the
computation to abort.

The “final” variable modifier of Java may be understood in
terms of finalize.

Repeating reads. Sometimes it is convenient to re-read the last
value read from a location l. We use the notation |l| to refer to
the last value read by this activity from the location l. That is, this
operation does not advance the index in the stream associated with
l. One may think of |l| as a local variable, and any occurrence of
l in an expression as replaced by the expression (|l|=l). Since
|l| is a local variable, it may be read multiple times.
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2.2.1 Implementation considerations
A stream can be represented as a list or an array. An implementation
needs to represent only a window on the stream, corresponding
to the minimum and maximum indices for the location in the
object view of any activity in the configuration. The stream may
be run-length encoded, so that a phantom write is implemented by
incrementing a stutter-count.

For certain locations it is possible to determine a static bound
on the maximal window size. For instance, scoped locations may
be implemented as ordinary variables, i.e., variables whose streams
have unit windows.

Similarly ancestor-scoped locations that are solely used to com-
municate between parents and children may be treated as ordinary
variables, since they are not subject to concurrent access:

PROPOSITION 12. A CF program that does not exhibit any sibling
communication may be executed in buffers with unit windows.

Since the world views of parents and children are synchronized
by async and finish, the window for each location remain unit-
sized.

Single-writer multi-reader variables can be optimized signifi-
cantly. If all reading activities are known (e.g. through compiler
analysis), the runtime system can implement “flow control” tech-
niques. In general, it may not be possible to statically bound the size
of the buffers. However, a scheme like the one introduced by [24]
can be used to schedule activities in a way that guarantees that the
buffers will not grow more than is necessary. A small buffer size
is allocated for a shared location, and writers are blocked if neces-
sary. The underlying mechanism for the detection of stabilities can
be used to determine if write activities need to be released.

It should be noted that in most scientific computations, com-
munication patterns change very slowly if at all, and therefore the
minimum buffer sizes needed to execute the program will be known
after the first few iterations.

Program transformation rules. We remark on an important prop-
erty of the CF model. A location private to an activity can be freely
read and written by the activity. This is the basis for many program
transformations that can lead to significant performance improve-
ment. In CF, shared locations may not be read and written into
freely. Indeed, reads and writes are to be thought of as “linear”
events (multiplicities matter), that have side-effects on hidden state
(the activity’s object view). In this CF reflects the reality of modern
architectures. The development of a full set of program transforma-
tion laws for the CF model is beyond the scope of this paper.

2.3 Programming examples
The programming model offered by MJ/CF is rich enouth to ex-
press many usefull patterns including many that are difficult or im-
possible to express with some of the more restricted programming
models discussed earlier.

2.3.1 Stream based computation
Stream based computation in the style of Kahn process networks
(KPN) can be difficult to express with models that disalow sibling
(lateral) communication. Additionally, KPNs express the end of a
computation by deadlocking, which is a challenge for a determi-
nate deadlock free language. For MJ/CF, a deadlock in the KPN
translates into a stability in MJ/CF:

EXAMPLE 13 (HAMMING CODE). The problem is to produce a
stream of multiples of 2, 3 and 5 in strictly ascending order.

This code prints out the first N numbers in the Hamming se-
quence.

class Hamming {
int X = 1, X2 = 2, X3 = 3, X5 = 5;
void run() {

int one = X; // read and discard first value.
finish {

async while (! stuttered(X)) X2 = 2*X;
async while (! stuttered(X)) X3 = 3*X;
async while (! stuttered(X)) X5 = 5*X;
async { // writes X, reads X2, X3, X5.

int r2 = X2, r3 = X3, r5 = X5;
for(int i=1;i < N; i++) {

if (r2==r3) {
if (r3=<r5) {

X = r2; r2=X2; r3=X3;
if (r2==r5) r5=X5;

} else {
X=r5;r5=X5;

}
} else if (r2 < r3) {

if (r2 =< r5) {
X=r2;r2=X2; if (r2 == r5) r5=X5;

} else {
X=r5;r5=X5;

}
} else {

if (r3=<r5) {
X=r3;r3=X3; if (r3==r5) r5=X5;

} else {
X=r5;r5=X5

}}}
}}}

int out() {
return X;

}
}

Above, each async should be considered as a process in a
process network, and each of the variables X, X2, X3 and X5 consti-
tutes a communication channel. Note that after N iterations of the
for loop, there will be a stability involving X, and this will cause
the first three activities to terminate. Concurrently, another thread
may read and use the values produced in X.

The program falls in the category of single-writer multiple
reader programs discussed earlier. It is possible to schedule the
different activities in a data-driven fashion so that only quite small
windows are needed for each of the shared variables.

2.3.2 Stencil Computation
Stencil computations are very common in many scientific codes. In
general, there is an array where the value at a particular point is
defined in terms of the values at neighboring points. The relaxation
scheme dictates whether the values to be used should be new values
or old values, therefore determining the data dependencies among
values.

The code below uses a relaxation scheme that requires the value
of G[i,j] to be computed in terms of G[i-1,j] and G[i,j-1]
from the current iteration, and G[i+1,j], G[i,j+1] G[i,j] from
the previous iteration.

EXAMPLE 14 (SOR ITERATION). Successive over-relaxation, adapted
from the Java Grande Benchmark suite:

1: finish foreach( int i,j in [1:M-1, 1:N-1]){
2: if(i!=1) tmp = G[i-1,j];
3: if(j!=1) tmp = G[i,j-1];
4: for (int p=0; p<N; p++)
5: G[i,j] = omega/4 * (G[i-1,j] + G[i+1,j] + G[i,j-1]

+ G[i,j+1]) + (1-omega) * G[i,j];
}
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The loop on Line 1 spawns an activity for each cell in the array
G, except for those at the boundary. Lines 2 and 3 guarantee that
reads for G[i-1,j] and G[i,j-1] on line 5 will block until the
values for the current iteration are available, thereby insuring that
the data dependencies are satisfied.

2.3.3 Clocked computation
We sketch an implementation of X10 clocks in MJ/CF. Each
clock c is represented as a mutable variable Vc in the scope of the
activity creating the clock. A resume operation is implemented
by performing a commutative write on Vc. A next operation is
implemented by reading the value of Vc. This suspends until all
activities that could write to Vc in the current phase have done so
or have suspended. Thus the stability rule will advance activities
suspended on a next only after all activities have performed the
equivalent of a next.

2.3.4 Parallel reduction operations
EXAMPLE 15 (HISTOGRAM, REVISITED). The code in Exam-
ple 4 produces the desired result under CF semantics. All com-
mutative writes to a location B[j] by multiple activities happen in
phase 1. On termination of all the foreach’s, the current activity’s
index for each B[j] that was assigned to has moved to 1 (per the
Join Rule); hence the location is not available for further commuta-
tive writes in phase 1. (Note that no stability was needed to derive
this closure.) A subsequent read of B[j] (by the current activity or
an activity it spawns) will therefore return the number of indices i
in A such that A[i]=j.

2.3.5 Strongly connected components
In some cases, it is possible to take advantage of stability detection
and stuttering to write cleaner algorithms. As an example, con-
sider the following implementation of the algorithm proposed by
Fleischer, Hendrickson, Pinar [14] (and improved by McLendon et.
al [18]) for finding strongly connected components on distributed
graphs.

The algorithm is based on two basic principles. First, given a
node v in a graph, consider P the set of all predecessors of v, S the
set of all successors, and R be the remainder of the nodes, those
that are neither predecessors nor successors. Then, the intersection
P∩S is a strongly connected component, and all other SCCs will be
a subset of either S, P or R. Thus, one can find SCCs in a divide
and conquer fashion by recursively looking for strongly connected
components in S−P, P−S and R.

The second basic principle, is that if all the predecessors of v are
in a strongly connected component different from v, then we know
v must be a singleton.

The main routines in the algorithm are a trim() routine that
marks nodes as singletons based on the second principle, and a
setSuccessors/setPredecessors routine which identifies the
successors and predecessors for a given node.

The trim routine will mark a node as a singleton when all its
predecessors have been marked as belonging to a different scc.

0:private void trim(Graph g, int i){
1: boolean marked[g.size]=false;
2: finish foreach(n in g.nodes){
3: if( |n.sccID| == i){

marked[n.ID];
} else {

marked[n.ID]=true;
}

}
4: finish foreach( n in g.nodes){

5: if( |n.sccID|==i ){
boolean tmp = true;

6: for(pred in n.predecessors){
7: tmp = tmp && marked[pred.ID];

}
n.done = tmp;
if(tmp){

n.sccID=SINGLETON;
marked[n.ID]=true;

}}}}

In the code, the array marked will indicate whether a node has
been marked as belonging to an SCC different from i. Initially, all
the entries in marked corresponding to nodes with sccID!=i are
set to true, but the rest of the entries are made empty, so any thread
that tries to read from them will block until they are given a value
or until a stability is reached. Note that the read of n.sccID in line
2 has been marked with |.| to indicate that it is a non-consuming
read.

Once marked has been initialized in this way, the foreach in line
3 will mark the singleton nodes according to the second principle
defined above. Note that a node with predecessors that have not
been marked will block reading on line 6, until all its predecessors
have been marked. At some point, there will be a stability involving
all the nodes that can not be marked as singleton according to the
second principle, and when the stability is resolved, those nodes
will read false from line 6, and will not be marked as a singleton.

The code to identify successors of a node is very similar to the
code for trim().

private void setSucc(Graph g, Node v, int i){
0: boolean marked[g.size]=false;
1: finish foreach(n in g.nodes){
2: if( |n.sccID| == i ){

marked[n.ID];
} else {

marked[n.ID]=false;
}

}
3: marked[v.ID] = true;
4: finish foreach(n in g.nodes){
5: if( marked[n.ID] ){
6: foreach( t in n.successors){

if( |t.sccID|==i){
7: t.isSucc = true;
8: marked[t.ID] = true;

}}}}}

The key difference is that instead of having to wait until all
the predecessors have been visited, we want to mark a node as a
successor if any of its predecessors is a successor. Thus, each node
will block on Line 5 until any of its predecessors marks it, and as
soon as that happens, it will unblock and mark all its successors in
line 8. Once all the successors of v have been marked, all the nodes
with sccID==i that are not successors of v will be involved in a
stability on Line 5. When the stability is broken, the finish in line 4
will complete, and the method will return.

2.3.6 Managing Stabilities
Library code must be prepared to handle stabilities whenever it
reads a shared variable. We show how to progress from a stability
in the following example. It illustrates that intricate patterns of
interaction between two siblings are possible in CF.

EXAMPLE 16 (BOUNDED BUFFER). This example illustrates the
use of bilateral communication over a single mutable location
(ack), and how “deadlock” can be detected and handled.

A producer activity P will invoke push; a consumer activity C
pop:
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OneBuffer o = new OneBuffer();
async produce(o); async consume(o);

P must block if it attempts to write a value when the buffer is
full’ C must block if it attempts to read an empty buffer.

The code is:

class OneBuffer {
0: Object value;
1: boolean ack;
2: OneBuffer( Object v) { value = v; ack = true;}
3: void push(Object v) {
4: value = v;
5: boolean c = ack;
6: while (ack && stuttered());
7: while (ack && stuttered()) ack = true;
8: }
9: Object pop() {
10: while (ack && stuttered());
11: ack = true;
12: while (ack && stuttered()) { ack = true; }
13: return v;
14: }
15:}

The value to be communicated is stored in value; ack is used
by P to signal that a value is available to be consumed, and is also
used by C to signal that the value has been consumed. Note that
ack will always take on the value true, and is used purely for
synchronization.

Consider the code for push. While P is waiting for the buffer to
be read, C may be blocked on a read of another variable. This could
lead to a stability, and hence the read will return with a stutter (Line
6). These reads must be ignored. Control moves to Line 7 only
when a “fresh” value has been received (written by pop on Line
11.) Symmetrically, C may have been waiting for the buffer to be
written into, while P was blocked on another read. The resulting
stabilities would cause phantom writes that must be skipped over
in Line 7 so that a “fresh” write can be performed (to be consumed
by pop on Line 10). Note that if a new write to an index does not
invalidate a phantom write that has already been performed at that
index. A subsequent read from that index will continue to cause
stuttered() to succeed. Thus the idiom on Line 7 (and Line 11)
ensures that the current activity can skip over phantom writes and
write a “fresh” value (as long as the phantom writes and the new
value are the same).

2.4 Other CF programming languages
The following examples indicate how CF can augment and usefully
extend existing programming languages. CF provides a conceptual
framework which can be used to integrate work on data-races,
dependency-based control structures and alias control.

2.4.1 Jade/CF

[25] presents a design for implicitly concurrent execution of se-
quential programs that is strikingly similar to our proposal in many
respects. First, the design is intended to be applicable to any se-
quential language. Second, it uses shared variables for communi-
cation between activities, rather than some explicit data structure,
such as a stream. Third, it distinguishes between private data and
data that may be shared between multiple activities. Fourth, its con-
structs (described below) can be understood purely within an im-
perative view of computation. Fifth, Jade computations are deter-
minate and deadlock-free.

In Jade, a programmer specifies read-write effects of a task on
shared data using the with, withonly and without constructs.
with specifies positively the side-effects that the enclosed code

will perform; this creates synchronization since the implementa-
tion must ensure that all prior activities that affect these locations
must complete their execution before this code can run. withonly
specifies that the enclosed code has no side-effects other than the
ones specified; before actually mutating data the task must execute
a (nested) with to obtain access to the data. The code enclosed by
a withonly can be run as a concurrent activity (async). without
specifies that the current activity will no longer perform the given
side-effects; this may permit other dependent tasks to progress.
Thus Jade is able to achieve directional, acyclic data flow.

Jade’s tasks correspond to CF’s asyncs. The with, withonly
and without constructs are very synergistic with CF. For instance,
without information can be used to determine stabilities more
locally. with provides a novel (determinate, deadlock-free) CF
synchronization construct: a preceding task may communicate the
“current view” of a location to a succeeding task.

CF’s finish would be a useful addition to Jade, complement-
ing its data-dependency-based synchronization. Additionally, CF
brings to Jade bi-lateral communication, and phased computation.
We expect to investigate this integration in future work.

2.4.2 Cilk/CF

Cilk/CF associates every shared memory location with a stream,
and every thread with a (world) view. The Cilk thread creation
mechanism, spawn, creates a thread inheriting the parent view. Par-
ent activity continues to run in parallel with spawned procedures,
per Cilk semantics. The sync construct updates the parent’s world
view with the lub of the spawned procedures’ world views. Each as-
signment of a pointer to a global location carries the writer’s view
of the target location; each read updates the reader’s view of the
target location.

[13] developed a data race checker for Cilk programs without
locks and critical sections. This subset of Cilk programs is shown
to be determinate. [8] extended the checker and shows that the
introduction of commutative (“Abelian”) critical sections do not
violate determinacy in the absence of data races. Abelian critical
sections are similar to commutative writes of [31].

The basic results about Cilk/CF are as follows.

PROPOSITION 17. Any Cilk program P may be executed as a
Cilk/CF program. If P is race-free (when viewed as a Cilk pro-
gram), it will produce the same result when executed as a Cilk/CF
program.

In particular, race-free Cilk programs will not abort when exe-
cuted as Cilk/CF programs. The results follow from the observa-
tion that race-free Cilk programs do not permit sibling communica-
tion, and Proposition 12. Additionally, it is not difficult to see how
to design a Cilk/CF implementation so that it can execute a pro-
gram that is race-free as a Cilk program with buffers of size one.

Note however that Cilk/CF substantially extends the power of
Cilk. The presence of lateral communication in Cilk/CF means
it is no longer possible to take a Cilk/CF program, strip the Cilk
keywords and obtain a C program whose sequential execution is a
correct Cilk/CF execution, as the following program demonstrates:

EXAMPLE 18 (Cilk PROGRAMS WITH RACES.). Consider the fol-
lowing program [13, Figure 1]:

1: int x;
2: cilk void foo() {
3: x = x + 1;
4: }
5: cilk int main() {
6: x = 0;
7: spawn foo();
8: spawn foo();
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9: sync;
10: printf("x is \%d\n", x);
11: return 0;
12:}

CF forces both the activities spawned at Lines 7–8 to write the
value 1 at index 1. After the sync the index for the location is 1
and thus the value 1 is printed out, not 2. However, two activities
performing a commutative operation x += 1, are equivalent to a
single activity performing x += 2.

Thus Cilk/CF is more expressive than Cilk because it can de-
terminately express dataflow computation, and lateral and phased
communication. This substantially changes the nature of the lan-
guage.

2.4.3 X10/CF

We are developing an integration of X10 [7, 26] with CF. X10 is a
modern statically-typed, class-based object-oriented language pro-
viding a notion of places for clustered execution, multi-dimensional
arrays, value types and concurrency primitives (async, finish,
clocks, conditional atomic blocks) quite different from Java.

X10/CF augments locations with streams and activities with
world views. X10 clocks can be simulated by mutable locations
(Section 2.3.3) and are hence not needed in X10/CF as a separate
construct.

Another key area of ongoing investigation in X10/CF is the de-
sign of a powerful and flexible scoping system for objects which
ensures that objects can properly be classified dynamically as pri-
vate to an activity or shared between them. (Locations known to be
scoped can be implemented very efficiently, Section 2.2.1). It must
be possible to declare objects as scoped, ensure that they remain
scoped during normal operation, and yet permit a way by which the
objects may be lent or even published for sharing between multiple
activities. It must be possible to “cast” an object to a scoped type;
the cast succeeds if in fact the object lies in the current activity’s
neighborhood.

We expect to build on the static techniques for thread-escape
analysis [9] work on alias control [16], such as static techniques
using ownership types [4, 5, 6] and alias annotations [3] and
dynamic techniques [21].

3. Semantics
We now present a formal semantics for MJ/CF, based on the MJ
calculus of [15]. An MJ configuration is a quadruple (H,V S,s,FS).
H represents the heap of objects. The heap is represented as a bind-
ing of object names to a pair of the class name and a finite func-
tion mapping field names to values (objects or basic values). VS,
the variable stack, represents the block structure of the underlying
programming language. The variable stack changes during reduc-
tion whenever a new scope is added or removed. s is the statement
currently being executed. FS the frame stack, represents the con-
tinuation that follows the execution of s. In the case that s is an
expression that evaluates to a value (say v), the head of the frame
stack is an open frame with a hole to indicate the position at which
v is to be substituted. Otherwise (s is a statement without a return
value), the head of the frame stack is a closed frame without a hole.

This structure is changed for MJ/CF by taking a configuration
to be a pair (H,∆) where H is a heap (changed from MJ to include
stream information with each location, ie. fields of every object)
and ∆ is a tree each of whose nodes is labelled with an activity.
An activity is of the form (s,W,VS,FS,sb) where VS and FS are
as above. The component W at a location describes the RWindex
of this activity for the location — in terms of the discussion 5, we
are coding as a read-index and a “dirty” bit that is 0 or 1; sb is a

boolean bit that indicates the stuttering status of the last read. These
changes are summarized in Figure 1.

(Configuration) ::= (H,∆) | E
∆ ::= (W,VS, CF, FS) | ∆� ∆̄ | FS : ∆

∆̄ ::= ∆1, . . . ,∆n
(Error) E ::= abort
(Heap) H ::= finite pf from oids to heap objects
(Heap Objects) ho ::= (C,F )

F ::= finite pf from field names to VStreams
(ValueStream) ::= Function from a finite prefix of non−

int to ViewedValues x boolean
(ViewedValues) ::= Values x Object View
(ObjectView) oW ::= finite pf from field names to RWIndx
(WorldView) W ::= finite pf from oid x field names to RWIndx
(RWIndx) ::= int x [0,1]

Figure 1. Configurations for MJ/CF

The objects in the heap have some extra structure to support
MJ/CF implementation. For every object in the heap, say o, we
will assume that there is a boolean slot o.scoped. We emphasize
that o.scoped is not visible to the programmer. We will assume
that the heap contains objects Integer(i) for each integer i. To
simplify presentation, we will assume that these Integer objects
do not have any fields. Integer(i).scoped is always false for
all such objects. To simplify notation, we use Integer(i) as the
object id for Integer(i).

Tree transformations. The transition relation on composite con-
figurations is described as a tree transformation, following our ear-
lier work [26]. Let ∆̄ be the (possibly empty) sequence ∆0, . . . ,∆n−1.
We use the syntax n� ∆̄ to indicate a tree with root node n and sub-
trees ∆0, . . . ,∆n−1.

A rule ∆[∆1] −→ ∆[∆2] is understood as saying that a tree ∆

containing a subtree ∆1 can transition to a tree which is the same
as ∆ except that the subtree ∆1 is replaced by ∆2. Thus if ∆ is
the tree 1(2(3,4),5(6)) then an application of the rule ∆[2] −→
∆[8(9)] gives the tree 1(8(9,3,4),5(6)). An application of the rule
∆[2�∆′]−→ ∆[8(9)] gives the tree 1(8(9),5(6)) (the entire subtree
at 2 is replaced). This rule also ensures that local aborts anywhere
in the tree abort the global computation.

(COMPOSITE)
(H,∆1)−→ (H ′,∆2) | E
(H,∆[∆1])−→ (H ′,∆[∆2]) | E

MJ transitions. The transition system incorporates mutatis mu-
tandis all the MJ reduction and decomposition reduction rules
( [15], Fig 2,3])) for the various MJ constructs, except for changes
caused by the introduction of streamed fields of heap objects. These
changes are: the rule (E-New) is replaced by (New) below (to
ensure the new object is created with the right initialization for
streams); the rules, (E-FieldAccess) and (E-FieldWrite) are re-
placed by rules that operate appropriately on the streams.

In the development below, we only describe these changes in
addition to the description of the new features, namely asynchro-
nous activities and the stuttering rule for stability. The appendix
has a full collection of transition rules.

Notation. For any partial function f , we write f (x) ↓ for x ∈
dom( f ), f (x) ↑ for x 6∈ dom( f ). We use f [x 7→ y] to describe the
partial function that agrees with f everywhere except x where it
is set to y. We often use set notation to describe a partial function
as a collection of pairs, eg. the partial identity function on positive
numbers less than 3 would be written as {0 7→ 0,1 7→ 1,2 7→ 2}.
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If H(o) = (C,F ), we write fields(C) (resp. c-fields(C)) or
fields(o) (resp. c-fields(o)) for the fieldnames (resp. commutative
integer field names) in C. For each commutative integer field f in
o, we assume that there is a separate slot (not accessible to user
programs) called curr f that is used to maintain a set of Integers;
*(curr f ) returns (v, /0) where v is the the Integer object that is the
product of the elements in the set.

For a RWIndex (x, i), we use notation wInd((x, i)) for x + i,
rInd((x, i)) for x. We write max((x, i),(y, j)) for (max(x,y),max(x+
i,y+ j)−max(x,y)), ++r to indicate the partial function that maps
(x, i) to (x+1,0), and ++w to indicate the partial function that maps
(x, i) to (x+ i,1). We use notation W[o. f ++w] to indicate the partial
function W[o. f 7→ ++w(W (o. f ))] (similarly for W[o. f ++r])).

Let dom(F ) = { f1, . . . , fn}. Then: extend(W,H,o,oW) is de-
fined as extendDom(W,H,o)[o. fi 7→ max(oW( fi),W(o. fi)) | i =
1 . . .n] where extendDom(W,H,o) = W if H(o) ↓ and W[o. fi 7→
(0,1) | i = 1 . . .n] otherwise. We write extend(W,H,o,0) for the
special case when oW is the partial function that maps all fi to
(0,1).

Finally, we write comb(W1,W2) for the partial function that is
undefined if both are undefined, to max(W1(o. f ),W2(o. f )) if both
are undefined and and to the sole defined value if only one is
defined. comb(·, ·) is commutative and associative, so we freely use
it with n > 2 arguments.

New objects. The new object creation has a standard MJ compo-
nent described in the first two lines of the hypothesis: fetching the
code of the constructor, creating a new object id and creation of a
suitable environment to evaluate the body of the constructor. The
last two lines of the hypothesis highlight the new features. The first
element of the stream associated with the fields is initialized to null
(paralleling the initialization of fields to null in MJ). Furthermore,
the RWIndex of the streams at the fields of the new object are ini-
tialized to (0,1). The commutative integer fields are initialized to
/0.

(NEW)
cnBody(C) = (x̄, s̄),∆c(C) = C̄,o 6∈ dom(H),
BS = [this 7→ (o,C), x̄ 7→ (v̄,C̄)],
o.curr f = /0,∀ f ∈ c-fields(C),o.scoped = ff,
F = [ f [0] 7→ null, f ∈ fields(C)],W′ = extend(W,H,o,0)
(H,(W,V S,new C(v̄),FS,sb))
−→ (H[o 7→ (C,F ),(W′,(BS◦ [])◦V S, s̄,(return o;)◦FS,sb))

The scoped new constructor is similar to above except for setting
o.scoped = tt. The new Integer(i) constructor returns the Integer(i)
object from the heap.

Field Write FIELDWRITE1 and FIELDWRITE2 handle writes at
already defined indices of the stream at location o. f . Such a write
succeeds, as per the first rule, if the newly written information
agrees with that already existing. On the other hand, by the second
rule, an abort is created if there is any mismatch.

(FIELDWRITE1)
H(o) = (C,F ),F ( f ) ↓, |F ( f )|> wInd(W(o, f )),W′ = W[o. f ++w],
π1(F ( f )[wInd(W(o. f ))]) = (v,{ fi 7→ W(v. fi) | ∀ fi ∈ fields(v)});
(H,(W,V S,o. f = v; ,FS,sb))−→ (H,(W′,V S, ; ,FS,sb))

(FIELDWRITE2)
H(o) = (C,F ),F ( f ) ↓, |F ( f )|> wInd(W(o. f )),
π1(F ( f )[wInd(W(o. f ))]) 6= (v,{ fi 7→W (v. fi) | ∀ fi ∈ fields(v)}),
(H,(W,V S,o. f = v; ,FS,sb))−→ abort

The third rule corresponds to the case when the write extends
the stream at o. f . At every stream location, we have ((v,oW),sb′):
the actual value v, oW is the writers perspective, ie. the writers RW-
indices of the fields of the object v, and sb′ in this case is ff since

the stream location was created by a program write. See also the
read rule below to see the impact of oW,sb′.

(FIELDWRITE3)
H(o) = (C,F ),F ( f ) ↓, |F ( f )|= wInd(W(o. f )),
H ′(o) = H[o 7→ (C,F [ f [|F ( f )|] 7→ ((v,oW), ff)])]
oW = { fi 7→W (v. fi) | ∀ fi ∈ fields(v)},W′ = W[o. f ++w];
(H,(W,V S,o. f = v; ,FS,sb))−→ (H ′,(W′,V S, ; ,FS,sb))

Finalizing a field is analogous to the third rule, where all future
indices of the stream are fixed to the current value.

Field Access. Field access can block. The following rule permits
field access only if the index of the attempted read is filled in the
stream at the location o. f . In this case, the RW-index increments
by ++r.

(FIELDACCESS)
H(o) = (C,F ),F ( f ) ↓, |F ( f )|> rInd(W(o. f )),
F ( f )[rInd(W(o. f ))] = ((v,oW),sb′),
W′ = extend(W,H,v,oW)[o. f ++r]
(H,(W,V S,o. f ,FS,sb))−→ (H,(W′,V S,v,FS,sb′))

The RW-indices of the fields for the newly read object are
updated to account for the writers perspective of the fields of the
object being read. The sb of the activity is also updated to reflect
the stuttering status of the newly read field.

stuttering(). The stuttering bit is returned.
(STUTTERING)

(H,(W,V S,stutter(),FS,sb))−→ (H,(W,VS,sb,FS,sb))

Commutative writes. In contrast to regular write (FieldWrite1),
commutative writes abort if writes are attempted to an already filled
index. In the case when the write is to an as yet unfilled index, the
value is added to the set at curr f .

(CFIELDWRITE2)
H(o) = (C,F ),F ( f ) ↓, |F ( f )|= wInd(W(o. f ))
v = Integer(y),H ′(o) = H[o.curr f 7→ {v}∪o.curr f ]
(H,(W,V S,o. f∗= v; ,FS,sb))−→ (H ′,(W′,V S, ; ,FS,sb))

Asynchronous activities. For conceptual simplicity, we break the
finish async construct into two pieces. The effect of the combined
finish async construct is that a collection of activities are spawned
by async, whose termination is awaited by the finish.

async s spawns a new activity initialized with an empty continu-
ation and the variable stack of the spawning environment (the static
semantics ensures only final variables can be accessed in VS).

(ASYNC)

(H,(W,VS,async s,FS,sb))
−→ (H,(W,VS, ; ,FS,sb))� (W,VS,s, [],sb))

The finish rule creates a nested activity, with the given variable
stack but no continuation. On termination of this activity and its
subtree the parent activity may continue, with updated W, and
restored sb. The calculation of the updated W performs a maximum
operation over the RW-indices of the children activities.

(FINISH1)

(H,(W,VS,finish(s),FS,sb))−→ (H,FS : (W,VS,s, []))
(FINISH2)
∆ is a depth one tree of terminated activities of form
{(W1, ; ,VS1, [],sb1),(W2, ; ,VS2, [],sb2), . . . ,(Wn, ; ,VSn, [],sbn)}
(H,(FS,sb) : (VS, ; , [])�∆)−→ (H,(comb(W1, . . . ,Wn),VS, ; ,FS,sb))

Stability An activity is blocked on location o. f if it is in a con-
figuration of the form (H,(W,V S,o. f ,FS,sb)) such that: H(o) =
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(C,F ),F ( f ) ↓, |F ( f )|<= W(o. f ). An activity is also blocked on
location o. f if it is an ancestor of an activity blocked on o. f , and is
therefore suspended. Given an activity a, denote by b(a) the set of
memory locations blocking a.

Recall the definition of N(a) and P(a) from Section 2.1.3. Now,
define Pu(a) =

S
a′∈ancestor(a) P(a′), the set of locations that are

in the neighborhood of a or any of its ancestors. Let pub-l be the
locations of public heap objects potentially reachable from multiple
threads, hence not in any neighborhood. Then define:

N(a) = Pu(a)∪pub-l

We remark that actions by other activities can’t cause N(a) to
shrink, and the only way N(a) can grow is if another thread takes
an object in its neighborhood and escapes it into the shared heap.

With this notation, we introduce the concept of a predecessor
relationship, →, among memory locations. Let l → l′ if l′ ∈ N(a)
for some activity a blocked on l but not on l′ (i.e. l ∈ b(a) and l′ 6∈
b(a)). Let ?→ be the transitive closure of →. Informally, l → l′ in
some configuration if adding new information to l (and therefore
allowing those threads blocked on l to advance) could cause new
information to be added to l′.

The properties of N(a) imply that if l → l′ it will remain so until
some thread writes to l. Furthermore, as long as all the activities
that can write to l′ are blocked, l′ can not acquire new predecessors.

DEFINITION 19 (STABILITY). A set L of locations is said to be
stable in a configuration when

1. Each l ∈ L has a thread blocked on it.
2. All threads that can write to an l ∈ L in the configuration are

blocked.
3. {l | (∃l′ ∈ L) l → l′} ⊆ L.

4. (∀l, l′ ∈ L) l ?→ l′, l′ ?→ l

We often just say that L is a stability in the configuration. With this
definition, propositions 9, 10 and 11 are easily established.

When a stability is detected, two updates are performed. First,
the values of the last position in the stream associated with the
locations in the stability are copied over to the next index, along
with a tt marker to record stuttering. Second, commutative writes
are completed: so the temporary values are copied into the stream
of the location and the temps are reinitialized for the next round.

(STUTTERING)
S = {o1. f1, . . . ,on. fn} is a stability in (H,∆),H(oi) = (Ci,Fi),
H′ = H[oi 7→ (Ci,

F [ fi[|F ( f )|] 7→ (π1(F [ fi[|F ( f )|−1]]), tt)]) | i = 1 . . .n]
H′′ = H′[o′. f ′i 7→ (Ci,F [ fi[|F ( f )|] 7→ o′.*(curr f ′i ),curr f ′i 7→ /0)]

(H,∆) stutter−→ (H′′,∆)

3.1 Determinacy and deadlock-freedom.

The transition relation (−→∪ stutter−→ ) has no essential critical pairs.

• There are no read-read conflicts since the read-index into the
location streams are separate.

• There are no read-write conflicts since reads are blocking, see
(FIELDACCESS).

• There are no write-write conflicts since conflicting writes
leads to a global abort, see (FIELDWRITE2, COMPOSITE,
CFIELDWRITE2).

• There is an inessential critical pair between different uses of
(NEW) arising from reuse of the same object id in different
activities: this race is resolved by separating the name spaces
for object id generation in different activities. In this extended
abstract, we elide these routine details.

For stabilities, proposition 10 rules out critical pairs arising from
multiple invocations of (STUTTERING). Finally, from condition
2 of the definition of stability 19, there are no conflicts between
(STUTTERING) and (FIELDACCESS, *FIELDWRITE*).

In this light, subject to the proviso of separate name-spaces of
new object ids for different activities, we get:

PROPOSITION 20. The transition relation (−→ ∪ stutter−→ ) is 1-step
confluent.

With regard to deadlock detection, consider a globally deadlocked
configuration for the transition relation −→. In the light of (Stutter-
ing), it suffices to argue for the existence of stabilities, to show that
progress can be made in the transition relation (−→∪ stutter−→ ). Since
the set of locations is finite, there is a →-minimal ?→-equivalence
class, which is a stability. So, we get:

PROPOSITION 21. The transition relation (−→ ∪ stutter−→ ) is dead-
lock free .

3.2 Outline of denotational semantics
We outline a development of the denotational treatment for MJ/CF.
The stream interpretation of locations suggests that the denotation
should be a function on perspectives (a pair consisting of a world
view and a heap). A commutative write is modeled by associating
that phase of each location with a bag of values, each tagged with
a unique id, that depends only on the activation tree of the activity
writing that value into the location. With this structure it is not dif-
ficult to see that given information about the final heap h, to be used
to resolve whether or not a read stutters, an activity may be mapped
into a closure operator over perspectives in a straightforward fash-
ion, following the structure of the semantics of Default CC [27].
(Note that the world view produced by an activity is not subject to
shared mutation.) This observation provides us with the key insight
of declarative concurrency: a process should be associated with the
set of its fixed points, and parallel composition should be modeled
as the intersection of these sets.

An alternate approach is to translate CF programs composition-
ally into Default CC programs over the Kahn constraint system
[28] (augmented with bags for commutative writes). Each activ-
ity corresponds to a Default CC process with some private state,
namely the world view associated with the process. finish is mod-
eled by using the well-known short circuit technique to detect ter-
mination.

It remains to show how reads and writes may be modeled.
A read returns the value in the stream associated with the given
location at the given index – but it also spawns a concurrent agent
which uses a default to determine whether the location has been
written into in the current phase. If it has not, a phantom write is
performed. Note that this agent is spawned only for those locations
for which the activity being modeled performs a read. Commutative
writers are modeled by adding the value to a bag, and using defaults
to “close the bag”, and then reducing the bag to obtain the final
value.

The above remarks are intended to sketch out the underlying in-
tuitions for the denotational development. We leave for future work
the connection between the operational and denotational semantics,
and proof principles for establishing properties of CF programs.

4. Conclusion
We have presented a simple re-interpretation of concurrent muta-
ble variables, which leads to a powerful determinate, deadlock-free
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model of computation. This model, CF, is applicable to any sequen-
tial imperative language, and to many existing (implicitly) con-
current langauges, bringing together synergestically work on race-
detection, alias types and dependency-based control structures. We
have shown that CF leads to a very natural programming style. We
have presented an operational semantics for a language in the CF
family, and outlined a denotational interpretation, based on a con-
nection with Default CC.
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A. Syntax
Our presentation is built on top of the MJ calculus. The core MJ calculus, described in the appendix, includes mutable state, block structured
values and basic object-oriented features. It does not however represent packages, import statements, interfaces, arrays, built-in types, method
overloading, static state, try/catch/throws, loops, multi-threading.

(Program) p ::= cd1 . . .cdn; s̄
(Class) cd ::= class C extends C

{ fd1 . . . fdk cnd md1 . . .mdk }
(Field) fd ::= T f ;
(Constructor) cnd ::= C(T1 x1, . . .Tj x j)

{super(e1, . . . ,ek);s1 . . .sn }
(Method) md ::= τ m(T1 x1, . . .Tj x j)

{s1 . . .sk}
(Return type) τ ::= T | void
(Type) T :== C
(Expression) e ::= x Variable

null Null
e.f Field access
(C) e Cast
pe Promotable expression

(Promotable exp)pe ::= e.m(e1, . . . ,ek) Method invocation
new C(e1, . . . ,ek) Object creation

(Statement) s ::= ; No-op
pe Promoted expression
if (e==e) {s1 . . .sk}
else {sk+1 . . .sn} Conditional
e.f = e; Field assignment
T x; Local variable declaration
x = e; Variable assignment
return e; Return
{s1, . . . ,sn} Block

Table 1. Syntax for MJ

The core MJ calculus does not represent packages, import statements, interfaces, arrays, built-in types, method overloading, static state,
try/catch/throws, loops, multi-threading. Figure2 describes the features we add to core MJ.

(Field)
commutative Integer f ;

(Statement)
finish {async s1, . . .async sn}
finalize e.f
x *= e;

(Promotable exp)
new scoped C(e1, . . . ,ek)

Table 2. Additional Syntax for MJ/CF
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B. Configurations
An MJ configuration is a quadruple (H,V S,s,FS) where:

• H represents the heap of objects. The heap is represented as a binding of object names to a pair of the class name and a finite function
mapping field names to values (objects or basic values).

• VS, the variable stack, represents the block structure of the underlying programming language. The variable stack changes during
reduction whenever a new scope is added or removed.

• s is the statement currently being executed.
• FS the frame stack, represents the continuation that follows the execution of s. In the case that s is an expression that evaluates to a value

(say v), the head of the frame stack is an open frame with a hole to indicate the position at which v is to be substituted. Otherwise (s is a
statement without a return value), the head of the frame stack is a closed frame without a hole.

This structure is changed for MJ/CF by taking a configuration to be a pair (H,∆) where H is a heap (changed from MJ to include stream
information with each location, ie. fields of every object) and ∆ is a tree each of whose nodes is labelled with an activity. An activity is of the
form (s,W,VS,FS) where VS and FS are as above. The component W describes the read-index of this activity for the streams at all locations.
These changes are summarized below.

The objects in the heap have some extra structure to support MJ/CF implementation. For every object in the heap, say o, we will
assume that there is a boolean slot o.scoped. We emphasize that o.scoped is not visible to the programmer. We will assume that the heap
contains objects Integer(i) for each integer i. To simplify presentation, we will assume that these Integer objects do not have any fields.
Integer(i).scopedis always false for all such objects. To simplify notation, we use Integer(i) as the object id for Integer(i).

If H(o) = (C,F ), we write fields(C) or fields(o) for the fieldnames in C. Similarly, we write c-fields(C) or c-fields(C) for the names
of the commuting integer fields. For each commutative Integer field f in o, we assume that there is a separate slot (not accessible to user
programs) called curr f that is used to maintain a set of Integers; *(curr f ) returns (v, /0) where v is the the Integer object that is the product of
the elements in the set.

(Configuration) config ::= (H,∆) | E
∆ ::= (W,VS, CF, FS,sb) | ∆� ∆̄ | (FS,sb):∆
∆̄ ::= ∆1, . . . ,∆n

(Error) E ::= abort |
(Frame Stack) FS ::= F◦FS | []
(Frame) F ::= CF | OF
(Closed Frame) CF ::= s̄ | return e; | {} | e | super(ē)
(Open Frame) OF ::= if(•== e){s̄1}else{s̄2};

if(v == •){s̄1}else{s̄2};
•. f | • . f = e; | v. f = •; | (C)•
v.m(v1, . . . ,vi−1,•,ei+1, . . . ,en)
newC(v1, . . . ,vi−1,•,ei+1, . . . ,en)
super(v1, . . . ,vi−1,•,ei+1, . . . ,en)
x = •; | return•; | • .m(ē)
finalize •.f

(Values) v ::= null | o
(Variable Stack)VS ::= MS◦V S | []
(Method Scope)MS ::= BS◦MS | []
(Block Scope) MS ::= finite pf from variables to pairs (C,v)
(Heap) H ::= finite pf from oids to heap objects
(Heap Objects) ho ::= (C,F )

F ::= finite pf from field names to ValueStreams
(ValueStream) ::= Function from a finite prefix of nonnegative integers to ViewedValues x boolean
(ViewedValues) ::= Values x Object View
(RWIndex) ::= int x [0,1]
(Object View) oW ::= finite pf from field names to RWIndex
(World View) W ::= finite pf from oid x field names to RWIndex

Table 3. Configurations for MJ/CF
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C. Notation for transition rules
• eval(MS;x), evaluates a variable, x, in a method scope, MS. This partial function is defined only if the variable name is in the scope.
• update(MS,x 7→ v), that updates a method scope MS with the value v for the variable x, is also a partial function that is undefined if the

variable is not in the scope.
• For any partial function f , we write f (x) ↓ for x ∈ dom( f ), f (x) ↑ for x 6∈ dom( f ).
• We use f [x 7→ y] to describe the partial function that agrees with f everywhere except x where it is set to y.
• We often use set notation to describe a partial function as a collection of pairs, eg. the partial identity function on positive numbers less

than 3 would be written as {0 7→ 0,1 7→ 1,2 7→ 2}.
• For a RWIndex (x, i), we use notation wInd((x, i)) for x + i, rInd((x, i)) for x. We write max((x, i),(y, j)) for (max(x,y),max(x + i,y +

j)−max(x,y)). We write max((x, i),(y, j)) for (max(x,y),max(x + i,y + j)−max(x,y)), ++r to indicate the partial function that maps
(x, i) to (x+1,0), and ++w to indicate the partial function that maps (x, i) to (x+ i,1).

• Let dom(F ) = { f1, . . . , fn}. Then:

extend(W,H,o,oW) = extendDom(W,H,o)[o. fi 7→ max(oW( fi),W(o. fi)) | i = 1 . . .n]

where

extendDom(W,H,o) =
{

W, if H(o) ↓
W[o. fi 7→ (0,1) | i = 1 . . .n]

We write extend(W,H,o,0) for the special case when oW is the partial function that maps all fi to (0,1).
•

comb(W1,W2)(o. f ) =

 W1(o. f ), if W1(o) ↓,W2(o) ↑
W2(o. f ), if W2(o) ↓,W1(o) ↑
(W1(o. f ),W2(o, f )), if W1(o) ↓,W2(o) ↓

comb(·, ·) is commutative and associative, so we freely use it with n > 2 arguments.
• For W, a world view, let W(o. f ) = (x, i). W(o. f )++r to indicate the partial function W[(o. f ) 7→ (x+1,0)]. We use notation W(o. f )++w to

indicate the partial function W[(o. f ) 7→ (x+ i,1)].
• For f a partial function whose domain is a finite prefix, 0 . . .n, of the natural numbers, we use notation finalize( f ) for:

finalize( f )(i) =
{

f (x), if i ≤ n
f (n), if i > n
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D. Transition system
The transition relation on composite configurations is described as a tree transformation. Let ∆̄ be the (possibly empty) sequence ∆0, . . . ,∆n−1.
We use the syntax n� ∆̄ to indicate a tree with root node n and subtrees ∆0, . . . ,∆n−1.

A rule ∆[∆1]−→ ∆[∆2] is understood as saying that a tree ∆ containing a subtree ∆1 can transition to a tree which is the same as ∆ except
that the subtree ∆1 is replaced by ∆2. Thus if ∆ is the tree 1(2(3,4),5(6)) then an application of the rule ∆[2] −→ ∆[8(9)] gives the tree
1(8(9,3,4),5(6)). An application of the rule ∆[2�∆′]−→ ∆[8(9)] gives the tree 1(8(9),5(6)) (the entire subtree at 2 is replaced).

Tree rules

(COMPOSITE)
(H,∆1)−→ (H ′,∆2) | E
(H,∆[∆1])−→ (H ′,∆[∆2]) | E

(ASYNC)

(H,(W,VS,async s,FS,sb))−→ (H,(W,VS, ; ,FS,sb))� (W,VS,s, [],sb))

(FINISH1)

(H,(W,VS,finish(s),FS,sb))−→ (H,(FS,sb) : (W,VS,s, [],sb))

(FINISH2)
∆ is a depth one tree of terminated activities,{(W1, ; ,VS1, [],sb1),(W2, ; ,VS2, [],sb2), . . . ,(Wn, ; ,VSn, [],sbn)}
(H,(FS,sb) : (VS, ; , [])�∆)−→ (H,(comb(W1, . . . ,Wn),VS, ; ,FS,sb))

D.1 Stability Reduction

Stability

(STUTTERING)
S = {o1. f1, . . . ,on. fn | normal fields}∪{o′1. f ′1 . . .o′n. f ′n | commuting f ields}is a stability in (H,∆),H(oi) = (Ci,Fi),
H′ = H[oi 7→ (Ci,F [ fi[|F ( f )|] 7→ (π1(F [ fi[|F ( f )|−1]]), tt) | i = 1 . . .n]
H′′ = H′[o′. f ′i 7→ (Ci,F [ fi[|F ( f )|] 7→ (o′.*(curr f ′i ), ff),curr f ′i 7→ /0]
(H,∆)−→ (H′′,∆)
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Reduction1:

(EVAR-ACCESS)
eval(MS,x) = (v,C)
(H,(W,MS◦V S,x,FS,sb))−→ (H,(W,MS◦V S,v,FS,sb))

(EVARWRITE)
eval(MS,x) ↓
(H,(W,MS◦V S,x = v; ,FS,sb))−→ (H,(W,(update(MS,x 7→ v)◦V S, ; ,FS,sb))

(EVARINTRO)
BS′ = BS[x 7→ (null,C)],x 6∈ dom(BS◦MS)
(H,(W,(BS◦MS)◦V S,Cx; ,FS,sb))−→ (H,(W,(BS′ ◦MS)◦V S, ; ,FS,sb))

(BLOCKINTRO)

(H,(W,MS◦V S,{s̄},FS,sb))−→ (H,(W,({}◦MS)◦V S, s̄,({})◦FS,sb))

(BLOCKELIM)

(H,(W,(BS◦MS)◦V S,{},FS,sb))−→ (H,(W,MS◦V S, ; ,FS,sb))

(RETURN)

(H,(W,MS◦V S,return v; ,FS,sb))−→ (H,(W,V S,v,FS,sb))

(IFELSE1)
v1 = v2

(H,(W,V S, i f v1 == v2 {s̄1} else {s̄2}; ,FS,sb))−→ (H,(W,V S,{s̄1},FS,sb))

(IFELSE2)
v1 6= v2

(H,(W,V S, i f v1 == v2 {s̄1} else {s̄2}; ,FS,sb))−→ (H,(W,V S,{s̄2},FS,sb))

(FIELDACCESS)
H(o) = (C,F ),F ( f ) ↓, |F ( f )|> rInd(W(o. f )),F ( f )[rInd(W(o. f ))] = ((v,oW),sb′),W′ = extend(W,H,v,oW)[o. f ++r]
(H,(W,V S,o. f ,FS,sb))−→ (H,(W′,V S,v,FS,sb′))

(FIELDWRITE1)
H(o) = (C,F ),F ( f ) ↓, |F ( f )|> wInd(W(o, f )),π1(F ( f )[wInd(W(o. f ))]) = (v,{ fi 7→ W(v. fi) | fields(v) = { f1, . . . , fn}}),W′ = W[o. f ++w];
(H,(W,V S,o. f = v; ,FS,sb))−→ (H,(W′,V S, ; ,FS,sb))

(FIELDWRITE2)
H(o) = (C,F ),F ( f ) ↓, |F ( f )|> wInd(W(o. f )),π1(F ( f )[wInd(W(o. f ))]) 6= (v,{ fi 7→ W(v. fi) | fields(v) = { f1, . . . , fn}}),
(H,(W,V S,o. f = v; ,FS,sb))−→ abort

(FIELDWRITE3)
H(o) = (C,F ),F ( f ) ↓, |F ( f )|= wInd(W(o. f )),H ′(o) = H[o 7→ (C,F [ f [|F ( f )|] 7→ ((v,{ fi 7→ W(v. fi) | fields(v) = { f1, . . . , fn}}), ff)],
W′ = W[o. f ++w];
(H,(W,V S,o. f = v; ,FS,sb))−→ (H ′,(W′,V S, ; ,FS,sb))

(CFIELDWRITE1)
H(o) = (C,F ),F ( f ) ↓, |F ( f )|> wInd(W(o. f ))
(H,(W,V S,o. f∗= v; ,FS,sb))−→ abort

(CFIELDWRITE2)
H(o) = (C,F ),F ( f ) ↓,
v = Integer(y), |F ( f )|= wInd(W(o. f )), ,H ′(o) = H[o.curr f 7→ {v}∪o.curr f ]
(H,(W,V S,o. f∗= v; ,FS,sb))−→ (H ′,(W′,V S, ; ,FS,sb))

(FINALIZE1)
H(o) = (C,F ),(∃k,k′ : wInd(W(o. f ))≤ k,k′ < |F ( f )|) π1(F ( f )[k]) 6= π1(F ( f )[k′])
(H,(W,V S, f inalize o. f ; ,FS,sb))−→ abort

(FINALIZE2)
H(o) = (C,F ),F ( f ) ↓,(∀k,k′ : wInd(W(o. f ))≤ k,k′ < |F ( f )|) π1(F ( f )[k]) = π1(F ( f )[k′]),
H ′(o) = H[o 7→ (C,F [ f [|F ( f )|] 7→ (finalize(F ( f ))],W′ = W[o. f ++w];
(H,(W,V S, f inalize o. f ; ,FS,sb))−→ (H ′,(W′,V S, ; ,FS,sb))
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Reduction2:

(CAST)
H(o) = (C,F ),C �C′

(H,(W,V S,((C′)o),FS,sb))−→ (H,(W,V S,o,FS,sb))

(NULLCAST)

(H,(W,V S,((C)null),FS,sb))−→ (H,(W,V S,null,FS,sb))

(NEW)
C 6= Integer,cnBody(C) = (x̄, s̄),∆c(C) = C̄,
o 6∈ dom(H),o.scoped = ff,o.curr f = /0,∀ f ∈ c-fields(C),F = [ f [0] 7→ null, f ∈ fields(C)],
BS = [this 7→ (o,C), x̄ 7→ (v̄,C̄)],W′ = extend(W,H,o,0)
(H,(W,V S,new C(v̄),FS,sb))−→ (H[o 7→ (C,F ),(W′,(BS◦ [])◦V S, s̄,(return o;)◦FS,sb))

(SCOPED NEW)
C 6= Integer,cnBody(C) = (x̄, s̄),∆c(C) = C̄,
o 6∈ dom(H),o.scoped = tt,o.curr f = /0,∀ f ∈ c-fields(C),F = [ f [0] 7→ null, f ∈ fields(C)],
BS = [this 7→ (o,C), x̄ 7→ (v̄,C̄)],W′ = extend(W,H,o,0)
(H,(W,V S,new C(v̄),FS,sb))−→ (H[o 7→ (C,F ),(W′,(BS◦ [])◦V S, s̄,(return o;)◦FS,sb))

(INTEGER NEW)
C = Integer
(H,(W,V S,new C(v),FS,sb))−→ (H,(W′,V S, Integer(v),FS,sb))

(SUPER)
MS(this) = C,C �1 C′,cnBody(C′) = (x̄, s̄),∆c(C′) = C̄,BS′ = [this 7→ (o,C′), x̄ 7→ (v̄,C̄)]
(H,(W,MS◦V S,super(v̄),FS,sb))−→ (H,(W,(BS′ ◦ [])◦ (MS◦V S), s̄,(return o;)◦FS,sb))

(STUTTERING)

(H,(W,V S,stutter(),FS,sb))−→ (H,(W,VS,sb,FS,sb))

(METHOD)
H(o) = C,F ),mBody(C,m) = (x̄, s̄),∆m(C)(m) = C̄ →C′,BS′ = [this 7→ (o,C), x̄ 7→ (v̄,C̄)]
(H,(W,V S,o.m(v̄),FS,sb))−→ (H,(W,(BS′ ◦ [])◦V S, s̄,FS,sb))

(METHODVOID)
H(o) = C,F ),mBody(C,m) = (x̄, s̄),∆m(C)(m) = C̄ → void,BS′ = [this 7→ (o,C), x̄ 7→ (v̄,C̄)]
(H,(W,V S,o.m(v̄),FS,sb))−→ (H,(W,(BS′ ◦ [])◦V S, s̄,(return o;)◦FS,sb))

(SKIP)

(H,(W,V S, ; ,F ◦FS,sb))−→ (H,(W,V S,F,FS,sb))

(SUB)

(H,(W,V S,v,F ◦FS,sb))−→ (H,(W,V S, ; ,F [v]◦FS,sb))
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Decomposition Reduction1:

(SEQ)

(H,(W,V S,s1s2 . . .sn,FS,sb))−→ (H,(W,V S,s1,(s2 . . .sn)◦FS,sb))

(RET)

(H,(W,MS◦V S,return e; ,FS,sb))−→ (H,(W,MS◦V S,e,(return •;)◦FS,sb))

(EXPSTATE)

(H,(W,MS◦V S,e′; ,FS,sb))−→ (H,(W,MS◦V S,e′,FS,sb))

(IF1)

(H,(W,V S, i f e1 == e2 {s̄1} else {s̄2}; ,FS,sb))−→ (H,(W,V S,e1,(i f •== e2 {s̄1} else {s̄2};)◦FS,sb))

(IF2)

(H,(W,V S, i f v1 == e2 {s̄1} else {s̄2}; ,FS,sb))−→ (H,(W,V S,e2,(i f v1 == • {s̄1} else {s̄2};)◦FS,sb))

(FIELDACCESS)

(H,(W,V S,e. f ; ,FS,sb))−→ (H,(W,V S,e,(•. f )◦FS,sb))

(FIELDWRITE1)

(H,(W,V S,e. f = e′; ,FS,sb))−→ (H,(W,V S,e,(•. f = e′;)◦FS,sb))

(FIELDWRITE2)

(H,(W,V S,v. f = e; ,FS,sb))−→ (H,(W,V S,e,(v. f = •;)◦FS,sb))

(FINALIZE)

(H,(W,V S, f inalize e. f ; ,FS,sb))−→ (H,(W,V S,e,( f inalize • . f ;)◦FS,sb))

(VARWRITE)

(H,(W,V S,x = e; ,FS,sb))−→ (H,(W,V S,e,(x = •;)◦FS,sb))

(CAST)

(H,(W,V S,(C)e,FS,sb))−→ (H,(W,V S,e,((C)•)◦FS,sb))

Decomposition Reduction2:

(NEW-I)

(H,(W,V S,new C(v1, . . . ,vi−1,ei, . . . ,en),FS,sb))−→ (H,(W,V S,ei,(new C(v1, . . . ,vi−1,•, . . . ,en)◦FS,sb))

(SUPER-I)

(H,(W,V S,super.(v1, . . . ,vi−1,ei, . . . ,en),FS,sb))−→ (H,(W,V S,ei,(super.(v1, . . . ,vi−1,•, . . . ,en)◦FS,sb))

(METHOD1)

(H,(W,V S,e.m(e1, . . . ,en),FS,sb))−→ (H,(W,V S,e,(•.m(e1, . . . ,en)◦FS,sb))

(METHOD2)

(H,(W,V S,v.m(v1, . . . ,vi−1,ei, . . . ,en),FS,sb))−→ (H,(W,V S,ei,(v.m(v1, . . . ,vi−1,•, . . . ,en)◦FS,sb))
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