
Solving Large, Irregular Graph Problems using Adaptive Work-stealing

Guojing Cong (IBM)
Sreedhar Kodali (IBM)

Sriram Krishnamoorthy (Ohio State)
Doug Lea (SUNY Oswego)

Vijay Saraswat (IBM)
Tong Wen (IBM)

Contact email: vsaraswa@us.ibm.com

Abstract

Solving large, irregular graph problems efficiently is
challenging. Current software systems and commodity
multiprocessors do not support fine-grained, irregular
parallelism well. We present XWS, the X10 Work Steal-
ing framework, an open-source runtime for the parallel
programming language X10 and a library to be used
directly by application writers. XWS extends the Cilk
work-stealing framework with several features neces-
sary to efficiently implement graph algorithms, viz., sup-
port for improperly nested procedures, global termina-
tion detection, and phased computation. We also present
a strategy to adaptively control the granularity of paral-
lel tasks in the work-stealing scheme, depending on the
instantaneous size of the work queue. We compare the
performance of the XWS implementations of spanning
tree algorithms with that of the hand-written C and Cilk
implementations using various graph inputs. We show
that XWS programs (written in Java) scale and exhibit
comparable or better performance.

1 Introduction

Obtaining practical efficient implementations for
large, irregular graph problems is challenging. Cur-
rent software systems and commodity multiprocessors
do not support fine-grained, irregular parallelism well.
Implementing a custom framework for fine-grained par-
allelism for each new graph algorithm is impractical.

We present XWS, the X10 Work Stealing frame-
work. XWS is intended as an open-source runtime
for the programming language X10 [10], a partitioned
global address space language supporting fine-grained
concurrency. XWS is also intended as a library to be
used directly by application writers. XWS extends Cilk

work stealing [2, 4] with several features necessary to
efficiently implement graph algorithms, viz., support
for improperly nested procedures, worker-specific data-
structures, global termination detection, and phased
computation.

We present simple elegant programs using XWS for
different spanning tree algorithms using (pseudo-)depth-
first search and breadth-first search. We evaluate these
programs on a 32-way Niagara (moxie), and an 8-way
Opteron server (altair) and on three different bounded-
degree graphs: (i) graphs with randomly selected edges
and (a) no degree restrictions (b) fixed degree, and (ii)
planar torus graphs.

We show the performance of BFS and pseudo-DFS
search depends crucially on the granularity of parallel
tasks. We show that the granularity natural to the algo-
rithms – the examination of a single edge — leads to
poor performance at scale. Instead, sets of of vertices
must be grouped into batches. We show that a fixed-
size batching scheme does not perform well. For in-
stance, batches of size 1 yield a peak performance of
20 MEPS (Million Edges Per Second) on Niagara. In-
stead we develop an adaptive batching scheme in which
the batch size is sensitive to the instantaneous size of
the work queue. With this scheme, pseudo-DFS shows
linear scaling on Niagara and Opteron, achieving peak
performance of over 220 MEPS on moxie and substan-
tially outperforming C and Cilk implementations.

1.1 Challenges in solving large, irregu-
lar graph problems

The last few years have seen an explosion of main-
stream architectural innovation — multi-cores, symmet-
ric multiprocessors, clusters, and accelerators (such as
the Cell processor and GPGPUs) — that now requires
application programmers to confront varied concurrency



and distribution issues. This raises the fundamental
question: what programming model can application pro-
grammers use to productively utilize such diverse ma-
chines and systems?

Consider for instance the problem faced by designers
of graph algorithms. Graph problems arise in traditional
and emerging scientific disciplines such as VLSI design,
optimization, databases, computational biology, social
network analysis, and transportation networks.

Large-scale graph problems are challenging to solve
in parallel – even on shared memory symmetric mul-
tiprocessor (SMP) or on a multicore system – because
of their irregular and combinatorial nature. Irregular
graphs arise in many important real world settings. For
random and “scale-free” graphs [3] no known efficient
static partitioning techniques exist, and hence the load
must be balanced dynamically.

Consider the spanning tree problem. Finding a span-
ning tree of a graph is an important building block for
many graph algorithms such as those for biconnected
components, ear decomposition [9] and graph planarity
testing [8]. Spanning tree represents a wide range of
graph problems that have fast theoretic parallel algo-
rithms but no known efficient parallel implementations
that achieve speedup without serious restrictive assump-
tions about the inputs.

Bader and Cong [1] presented the first fast parallel
spanning tree algorithm that achieved good speedups on
SMPs. Their algorithm is based on a graph traversal ap-
proach, and is similar to DFS or BFS. There are two
steps in the algorithm. First a small stub tree of size
O(p2) is generated by one of the p worker through a
random walk of the graph. The vertices of this tree are
then evenly distributed to each worker. Each worker
then traverses the graph in a manner similar to sequen-
tial DFS or BFS, using efficient atomic operations (e.g.
Compare-and-Swap) to update the state of each node
(e.g. update the parent pointer). The set of nodes be-
ing worked on is kept in a local queue. When a worker
is finished with its portion (its queue is empty), it checks
randomly for any other worker with a non-empty queue,
and “steals” a portion of the victim’s work for itself.

For efficient execution, it is very important that the
queue be managed carefully. For instance, the opera-
tion of adding work (a node) to the local queue should
be efficient (i.e. should not require locking) since it will
be performed frequently. Stealing is however relatively
infrequent and it is preferable to shift the cost of steal-
ing from the victim to the thief since the thief has no
work to do (the “work first” principle). The graph algo-
rithm designer now faces a choice. The designer may
note [1] that correctness is not compromised by permit-
ting a thief to copy the set of nodes that the victim is
working on. Here the victim is permitted to write to the

queue without acquiring a lock. Now the price to be
paid is that the thief and the victim may end up work-
ing on the same node (possibly at the same time). While
work may thus be duplicated, correctness is not affected
since the second worker to visit a node will detect that
the node has been visited (e.g. because its atomic oper-
ation Compare-and-Swap will fail) and do nothing. Al-
ternatively, the designer may use a modified version of
the Dekker protocol [2] to resolve the race condition.
This guarantees that no work will be duplicated, but the
mechanism used is very easy to get wrong, leading to
subtle concurrency errors.

The above illustrates that the design of such high-
performance concurrent data-structures is difficult and
error-prone. This suggests packaging the required com-
ponents in a library or a framework and exposing a
higher-level interface to programmers.

1.2 X10

The X10 programming language [10] has been de-
signed to address the challenges of “productivity with
performance” on diverse architectures. X10 augments a
core sequential modern object-oriented language (very
similar to Java or Scala) with constructs for distribu-
tion (places) and concurrency (asyncs, finish, atomic
and clocks).1 The statement async S spawns a new
task or activity to execute the statement S. The state-
ment finish S executes S and waits for all activities
spawned during its execution to terminate. The state-
ment atomic S causes the statement S to be executed
as if in a single indivisible step (with no other activity
executing during this step). An X10 clock is a data-
structure that represents a dynamic barrier. The activity
creating a clock is said to be registered on that clock.
An activity that is registered on a clock c may cre-
ate new activities registered on c by executing async
clocked(c) S. An activity registered on a clock may
execute a next operation to suspend until such time
as all activities registered on the clock have executed a
next operation (barrier behavior).

X10 may be used to implement spanning tree com-
putations in a very straighforward way:

Example 1.1 (Psuedo-DFS in X10) The parallel ex-
ploration of a graph may be implemented thus:

1. class V {
2. V [] neighbors;
3. V parent;
4. V(int i){super(i);}
5. boolean tryColor(V n) {
6. atomic if (parent ==null) parent=n;
7. return parent==n;

1Discussion of the distribution constructs of X10 and advanced
concurrency constructs (when) is out of scope of this paper.

2



8. }
9. void compute() {
10. for (V e : neighbors)
11. if (e.tryColor(this))
12. async e.compute();
13. }
14. void dfs() {
15. parent = this; // root is visited.
16. finish compute();
17. }}

Computation is initiated by invoking r.dfs() on
the root vertex r. This visits r within the scope of a
finish. When a vertex is visited (its compute()
method invoked), each of its outgoing edges is examined
in sequence. If the vertex reached from the edge does
not have its parent set, its parent is set atomically, and
the vertex is (recursively) visited asynchronously. Thus
an activity is spawned for each vertex in the connected
component containing r. (This code does not implement
batching, a batched version is discussed later.)

We note that this program cannot be written in Cilk
without excessive synchronization. Cilk enforces a
“fully strict” condition: in X10 terminology this con-
dition requires that if the body of a procedure spawns
an async, then it must contain a finish enclosing
that async. Thus to write this program in Cilk an ex-
tra finish must be wrapped around the for loop on
Line 10. This introduces needless extra synchronization
which reduces performance.

Example 1.2 (BFS in X10) The breadth-first parallel
exploration of a graph may be implemented as follows:

1. class V extends VertexFrame {
2. V [] neighbors;
3. V parent;
4. V(int i){super(i);}
5. boolean tryColor(V n) { ... }
6. void compute(clock c) {
7. for (V e : neighbors)
8. if (e.tryColor(this))
9. async clocked(c) {
10. next;
11. e.compute(c);
12. }}
13. void bfs() {
14. parent=this;
15. finish async {
16. clock c = new clock();
17. compute(c);
18. }}}

The code differs from DFS in that all asyncs are
clocked. A new node is visited only after the clock ad-
vances (Line 10-11). Hence all vertices are visited in
breadth-first order.

1.3 XWS

A central challenge in implementing X10 is to effi-
ciently load-balance multiple activities, while respecting

dependencies introduced by clocks and finish. This
paper presents the design, implementation and evalua-
tion of a portion of the X10 runtime system for multi-
core and SMPs, XWS. XWS implements fine-grained
concurrency through an extension of Cilk Work Steal-
ing (CWS) [2, 4]. XWS extends CWS to better support
the programming of applications with irregular concur-
rency. It removes the link between recursion and concur-
rency introduced by fully strict Cilk model. Crucial to
this removal is a method in XWS for detecting termina-
tion of a computation without counting all the frames
created during the computation. Further, XWS inte-
grates barriers – essential for phased computations such
as breadth-first search – with work stealing. Finally,
XWS support the implementation of adaptive batching
schemes by the programmer. Batching is a technique
for increasing the granularity of parallel tasks by batch-
ing together several small tasks. Thieves steal a batch
at a time. Depending on the algorithm, the batching size
may have a dramatic impact on the performance of work
stealing. XWS permits the (X10 or XWS) programmer
to sense key metrics of the current execution and use
these to adjust batching size dynamically.

1.4 Rest of this paper

The rest of this paper is as follows. In Section 2,
we present the details of the design of XWS. In Sec-
tion 3 we examine comparable programs written using
an application-specific framework (Simple, [1]), as well
as Cilk, and compare performance on three different
graph inputs. Our graph generators include several em-
ployed in previous experimental studies of parallel graph
algorithms for related problems. For instance, we in-
clude the torus topologies, random graphs and geometric
graphs, used in [5], [7] and others.

• 2D Torus The vertices of the graph are placed on
a 2D mesh, with each vertex connected to its four
neighbors.

• Random Graph We create a random graph of
n vertices and m edges by randomly adding m
unique edges to the vertex set. Several software
packages generate random graphs this way.

• Geometric Graph In these k-regular graphs, each
vertex is connected to its k neighbors.

We show that the performance of these programs in
XWS can be substantially improved with batching. We
present schemes for adaptively determining the size of
the batch based upon an estimate of the current stealing
pressure.

Finally we conclude with a section on related
work and acknowledgements. Due to the page

3



limit, we can not provide more examples on how
to use the XWS framework. Readers please re-
fer to the Java implementation of XWS for details,
available at http://x10.sf.net, in the module
x10.runtime.xws.

2 X10 work stealing

This section presents the design of the XWS API, fo-
cusing on the application programmer who is directly
programming to the API. The discussion of the tech-
niques used by the X10 compiler to map X10 constructs
to XWS API calls (such as the introduction of “slow”
and “fast” variants of methods, a la Cilk) are beyond the
scope of this paper.

2.1 The XWS API

XWS exposes the following mechanisms to the
application programmer: (i) create a pool of workers
(new Pool(N)) (ii) submit a job (containing an activ-
ity) to the pool (pool.submit(job)), (iii) submit
a new activity t dynamically (w.pushFrame(t),
w.pushFrameNext(t), where w is the cur-
rent worker), (iv) remove the current activity
(w.popFrame()), and (v) wait for children ac-
tivities to terminate (w.sync()). XWS uses work
stealing to schedule these activities dynamically on the
workers in the given pool.

The programmer initiates computation by creating a
pool of N workers (threads). Computation is initiated by
submitting a job to the pool. The job contains a reference
to a frame F (see below), representing the top-level ac-
tivity. The thread submitting the job suspends until F is
executed to completion (thus job submission implies an
implicit “global” finish). On return, the thread may
submit additional jobs to the pool. In the current imple-
mentation, at most one job is permitted to be active in a
pool at any time.

Activities are represented by subclasses of
Frame. Subclasses must implement a a void
compute(Worker w) throws AbortOnSteal
method with the code representing the body of the
activity. (The AbortOnSteal exception is discussed
below.) Typically, the subclass will also contain
application-specific fields that store the values of local
variables in the procedure body in which the activity is
created.

Each worker w maintains an internal deque (double-
ended queue) of frames. The programmer creates a
new task by allocating a new frame and initializing its
state. A task t can be added to the deque of the current
worker w by invoking w.pushFrame(t). On com-
pletion, the task may be popped from the deque by in-

voking w.popFrame(). These calls are inserted au-
tomatically by the X10 compiler, but must be inserted
manually by the XWS programmer.

XWS implements the basic CWS strategy. Per this
strategy, each worker executes a basic scheduling loop.
In this loop, the worker W attempts to acquire a task (if
it does not have one already) by randomly choosing an-
other worker V and attempting to remove (steal) a task
from the top of its deque. This attempt will succeed only
if V has at least two items on its deque. If successful, the
task is transferred to W ’s dequeue and executed. Other-
wise the worker continues trying to steal from the next
worker after V .

Like Cilk, XWS uses closures to permit values to be
returned from asynchronous tasks. A closure contains a
frame and is used to return values in the case of stealing.
There is a one-to-one correspondence between a frame
and a task, but there may be multiple closures associ-
ated with a task. Each time a task is stolen, a closure is
created. (We omit the details for lack of space.)

XWS uses a modified Decker protocol [4] to imple-
ment stealing. Each worker is associated with a lock.
Before attempting to take an element from the victim’s
deque, the thief must acquire the victim’s lock (this also
locks out other thieves trying to mug the same victim).
However, the victim is not required to obtain this lock
except when it detects a theft has happened (by using a
Dekker protocol). This ensures that the fast path com-
putation (the victim pushing and popping tasks from its
deque) does not involve obtaining a lock unless a theft
is in progress.

Task stashing. To implement the submission of a new
task, the programmer may use one of two techniques. In
the “activity-as-subroutine” technique, the worker w de-
scends into the body of the new task T , through a sub-
routine call. Before that, it must push a task C onto
its deque representing the “continuation”: the code that
would be executed on return from T . While w is busy
executing T , some other worker may steal C from w’s
deque. Hence on return from T , the programmer must
ensure that the worker checks whether the current frame
has been stolen by executing w.abortOnSteal(x),
where x is the value returned by T . If the current frame
has indeed been stolen, this call will cause the value x
to be stashed in a way in which it is routed to the closure
associated with C, and will throw an AbortOnSteal
exception that will pop all the (now useless) activation
frames on the call stack. The exception is caught by the
scheduling loop for the worker, which now returns to the
top of the loop (looking for more work).

This technique has the drawback that it requires the
programmer to implement continuations (in Java this
means keeping a “program counter” field in the frame

4



and jump tables; sometimes the normal flow of sequen-
tial control has to be altered since Java does not permit
goto’s). It has the advantage that it preserves the “busy
leaves” property which establishes a good space bound
on the execution of the program (see [2, 4]).

In the dual “task stashing” technique, w pushes T
onto its deque and continues executing C. No contin-
uations need to be implemented – hence this is a very
simple technique for the application programmer. (Un-
fortunately, Cilk’s space bounds cannot be guaranteed
with this technique.) This technique is particularly use-
ful when implementing non fully-strict computations: a
procedure call may now simply invoke pushFrame re-
peatedly to stash tasks on the deque and return. The
scheduling loop must now be modified so that when con-
trol returns to it tasks are popped from the bottom of the
deque and execute until the deque is empty. Addition-
ally, before stashing tasks on the deque, the programmer
must ensure that the current frame is popped so that it
is not available to be stolen (recall that the top frame is
available to be stolen as soon as there are two or more
frames on the deque).

2.2 Global quiescence

In fully-strict computations completion of the first
task and the return of the corresponding closure indi-
cates termination. Improperly-nested tasks that do not
require a return call chain can do away with closures.
Hence, we need an alternate mechanism to identify ter-
mination.

In essence, the mechanism we have implemented de-
tects the stable property “all deques are empty” by using
a barrier, plus a counter checkCount that measures
the number of workers with non-empty deques. Initially
the count is 0. Whenever a worker checks out a job from
the submission queue, it increments the count. When-
ever a worker finds its deque is empty and starts stealing,
it decrements the count. Whenever it successfully steals,
it increments the count before releasing the lock on the
victim (thus ensuring that the count remains positive).

Note an important property of this mechanism. Sup-
pose a worker W0 checks out a task from the submission
queue. Its execution generates very few tasks which end
up being executed by W0. In this case the count will go
up to 1 and then down to 0 when W0’s queue is empty,
and the job will be considered completed. This is the
case even though P − 1 workers have not participated
in the barrier. Thus this mechanism does not require
all workers to participate, only those that actually steal
work.

We have now exposed enough of the XWS machinery
to write the pseudo-DFS program in Java (using XWS):

Example 2.1 (Psuedo-DFS in XWS) The program
uses the “task stashing” technique to handle new tasks.
There is no need to represent continuations.

1. class V extends VertexFrame {
2. V [] neighbors;
3. V parent;
4. V(int i){super(i);}
5. boolean tryColor(V n) { ... }
6. void compute(Worker w) throws StealAbort {
7. w.popFrame();
8. for (V e : neighbors)
9. if (e.tryColor(this))
10. w.pushFrame(e);
11. }
12. void dfs() {
13. parent=this;
14. compute((Worker) Thread.currentThread());
15. }}

Since Java does not have atomics, the implemen-
tation of tryColor is changed to use an appropriate
atomic method from Java concurrency utils (code omit-
ted). Since global quiescence detection is used, the
finish in the body of dfs() does not need to be im-
plemented.

2.3 Phased computations

We also added support for phased computations in
which tasks in this phase create tasks to be executed
in the next phase (cf BFS search). Phased computa-
tions are supported as a generalization of global quies-
cence. Each worker maintains two dequeues (the now
deque and the next deque). Depending on the phase
specified when spawning tasks, a task can be added to
the now deque (w.pushFrame(t)) or the next deque
(w.pushFrameNext(t)).2

When global quiescence is detected for the current
phase, the barrier action steps the computation to the
next phase. Each worker keeps track of the phase num-
ber it thinks it is in. After each round of stealing, it
checks to see if the barrier’s phase is the same as its
phase; if not, it advances the phase and swaps its next
and now deques. When checking into the barrier, each
worker specifies whether it has work to do in the next
phase. When the barrier is advanced checkCount is
initialized with the number of workers with work to do
in this phase, thus maintaining the invariant associated
with the barrier. If this count is 0, the job is terminated.

Note that this design permits workers to jump phases.
A worker Wi may finish computation in phase k and
start searching for work. Meanwhile other workers may

2We note in passing that pushFrameNext is not adequate to im-
plement all the functionality of X10’s clocks. In essence, only clocked
activities whose first action is to execute next (cf Example 1.2[Line
10]) can be implemented through such a call. The compiler must gen-
erate continuation-passing code to implement all the functionality of
clocks.

5



check into the barrier causing it to move to phase k + 1.
This phase may contain very little work, and the barrier
may trip repeatedly reaching phase k + m, before Wi

discovers the phase has advanced and updates its phase
to k + m. (The algorithm design ensures that Wi may
skip phases only if its next deque is empty.)

Example 2.2 (BFS in XWS) The breadth-first parallel
exploration of a graph may be implemented as follows.
The only change with the DFS code is in Line 10, where
a call to pushFrameNext is used.

1. class V extends VertexFrame {
2. V [] neighbors;
3. V parent;
4. V(int i){super(i);}
5. boolean tryColor(V n) { ...}
6. void compute(Worker w) throws StealAbort {
7. w.popFrame();
8. for (V e : neighbors)
9. if (e.tryColor(this))
10. w.pushFrameNext(e);
11. }
12. void dfs() {
13. parent=this;
14. compute((Worker) Thread.currentThread());
15. }}

3 Graph algorithms in XWS

We consider implementations of breadth-first and
depth-first search for spanning trees of a graph.

3.1 SIMPLE implementation (C)

The C implementation of DFS works as follows. First
a small stub-tree of size O(p2) is generated by one
thread randomly walking the graph starting from the
root. The vertices encountered in the walk are evenly
distributed into the stacks of the p threads. Each thread
then starts traversing the graph in DFS order. To prevent
race conditions during DFS traversals, lock-free proto-
cols are used to guard against multiple threads coloring
the same vertex. For load-balancing, a thread attempts to
steal a piece of the stack from another thread in case it
runs out of work. As a heuristic, each steal takes one
half of the stack from the victim. Note that in order
to reduce the cost of stealing, no synchronization is in-
voked in such steals. The steals may get stale values,
yet the correctness is not jeopardized as the thread will
later find all the stolen vertices have been visited. When
all threads run out of work and there is no work to steal,
the algorithm halt. The stacks and their top and bottom
pointers are declared as volatile, and each push/pop op-
eration involves operations on volatiles.

The C implementation of parallel BFS follows the
SPMD programming paradigm. The expansion of the

BFS frontier is implemented as follows. Each thread
keeps a local queue, and gets an equal portion of ver-
tices in the current frontier. In the beginning, there is
only one vertex (root) in the frontier, and only one thread
has an non-empty local queue. After draining the cur-
rent frontier vertices in the queue, new frontier vertices
are placed inside the queue. When all threads are done
with the current frontier (guaranteed with a barrier), the
newly-added vertices in the queues are merged together
to form the new global frontier. Repetitive appearances
of nodes in the frontier is allowed. The algorithm iter-
ates until no new frontier vertices are discovered.

3.2 Cilk implementation

The Cilk implementation of parallel DFS can be de-
rived easily from the sequential recursive DFS. Instead
of sequential traversal, we spawn a parallel DFS traver-
sal for each unvisited child of the current vertex. To
guard against race conditions among traversals, the ac-
cess to the color of a vertex is protected by lock-free
synchronizations. Load-balancing is handled by the
Cilk runtime library. However, as discussed earlier Cilk
forces each procedure to wait for termination of all its
children spawned during its execution.

In the sequential implementation of BFS, iteration is
over the vertices in the current frontier. Their unvisited
neighbors are then used to form the next frontier. To
achieve scalability in Cilk, the iteration has to be per-
formed in a divide-and-conquer recursive way so as to
utilize the Cilk work-stealing scheduler. The current
frontier is partitioned into blocks and the base case in
the recursion is the iteration over a single block. As in
the C implementation, repetitive appearances of vertices
in a frontier is allowed. The algorithm iterates until the
next frontier is empty.

3.3 XWS implementation:Batching

Algorithms for irregular graph problems are in gen-
eral not directly amenable to divide-and-conquer recur-
sive decomposition. However, we can still approximate
the properties that make work-stealing perform well for
these problems.

To do this, we first require compact task descriptions.
The size of a task description representing exploration
starting at each of k nodes should be constant, and in-
dependent of k. Otherwise, the communication over-
head of pushing and stealing nodes would overwhelm
processing, especially in algorithms such as spanning
trees, where the per-node costs merely amount to mark-
ing nodes and labelling their parents. We address this
by building up lists of work via simple linking: Each
node enqueued in the work-stealing queue is the head

6



of a singly linked list possibly containing other nodes
as well. The ordering of this list matters only in terms
of memory locality and interference with other threads,
which favors simple stack-based linking.

We next ask, what value of k should be used to batch
a set of unprocessed nodes. For any given node in an ar-
bitrary graph, we cannot know the value that will maxi-
mize aggregate throughput. One choice is to empirically
choose some fixed value. However, the use of any fixed
value would be too large during start up (stalling all but
the initial thread), and/or too small during steady state.
We can do better by first characterizing the best values
to use at boundary points:

• A queued root node represents all of the work in
the graph, so requires k = 1.

• If processing has nearly completed, and all remain-
ing nodes are dead-ends (i.e., leading to no further
expansion) choosing the best value of k is the coun-
terpart to choosing the sequential threshold of a
divide-and-conquer algorithm. This value, S, is an
empirical threshold relating algorithmic work ver-
sus framework overhead.

Unless the per-node costs of an application are high
enough to dictate that S = 1 (which is not the case
for spanning tree algorithms), a rule that causes k to
vary from 1 at roots to S at collections of dead-ends
will provide better load balance and throughput than one
that would use a fixed value. For some special graph
types, it is possible to determine a fixed function of this
form. For example, if the graph were actually a bal-
anced tree, k should increase exponentially from the root
to the leaves. However, in an arbitrary graph, any ap-
proach based on distance from roots would be prone to
arbitrarily poor estimates. Instead, each task may use
its current work-stealing queue depth to help estimate
global progress properties: If the queue is empty, then
even a single node placed on it is potentially valuable
to some other thread trying to steal it and further ex-
pand. Conversely, if the queue is very large, then other
threads must be busy processing other nodes, and any
newly discovered node is less likely to lead to further
expansion. Using a simple bounded exponential growth
function (here, powers of two) across these points main-
tains scaling properties: Each of the 2j nodes in a batch
of a size-j queue (for j ≤ log2(S)) should have 2−j

of the expected expansions as does the single node in
a size 1 queue. The choice of base two exponents is
not entirely forced here, and different constants might
be better for some graph types. However, the choice
does coincide with the scaling and throughput proper-
ties of work-stealing in the case of divide-and-conquer
over balanced binary trees, and adaptively approximates

this case by dynamically varying batch sizes based on
differential steal rates.

The resulting basic algorithm is a simple variant of
the DFS algorithm presented in Section 1: Each task ac-
cepts a list headed by one of its nodes. For each node,
it labels and expands the edges into a new list, pushing
that list onto work-stealing queue when its size exceeds
min(2Q, S), where Q is the queue-size. Notice that in
the case of S = 1 (which might be used for algorithms
with high per-node processing costs), this is identical to
plain DFS.

Our adaptive DFS improves on the implementation
of this idea by incorporating another common work-
stealing programming technique. In classic divide-and-
conquer programs, co-execution of two tasks a and b is
best implemented by forking a, then directly running b,
and then joining a. This saves the overhead of pushing
and then immediately popping and running b. We adapt
this idea here via some bookkeeping to swap lists rather
than pushing and then immediately popping a new list
when the original list is exhausted. The performance
improvements stemming from this technique are always
worthwhile, because they decrease overhead without
changing any other algorithmic properties. However, as
shown below, the extent of the improvement may vary
dramatically across different graph topologies.

As is the case with any work-stealing algorithm, the
value of S must be empirically derived. Thresholds are
functions of per-node application costs (here, marking
and setting spanning tree parents), as well as underlying
per-task framework costs (mainly, work-stealing queue
operations), as well as platform-level costs (processor
communication, memory locality effects and garbage
collection), along with interactions among these, and
so resist simple analytic derivation. However, each of
these component factors are properties of the program,
and not, in general, its inputs (i.e., the actual graphs).
As is the case for all work-stealing algorithms, choosing
values of S larger than necessary will increase the vari-
ance of expected throughput: In some executions this
may actually increase throughput due to less queue over-
head, but in others, a too-large value will cause load im-
balances, decreasing throughput. But sensitivity curves
across these values are shallow within broadly accept-
able ranges. We find that restricting values to powers of
two suffices.

Choice of Threshold This choice of threshold was
empirically guided by comparing performance across
powers of two. The impact of this choice varies across
graph types. Normalizing to 1.0 for S of 128, Table 1
shows throughput differences for graphs of 4 million
nodes. The best value of S indicates that XWS frame-
work overhead is low enough so that it is profitable to

7



Niagara Opteron
S T K R T K R
1 0.58 0.79 0.81 0.18 0.54 0.55
2 0.68 0.85 0.85 0 33 0.78 0.81
8 0.88 0.93 0.94 0.75 0.97 0.93
32 0.97 1.00 0.99 0.82 0.98 0.94
128 1.00 1.00 1.00 1.00 1.00 1.00
512 0.98 0.92 1.00 0.89 1.00 0.99
2048 0.96 0.92 0.91 0.86 0.97 0.97

Table 1. Relative performance across
thresholds

parallelize even batches of only a 100 or so dead-end
nodes. The drop-off beyond 128 is very shallow, so
larger values could have been used with almost no loss.
However, choosing thresholds nearer the lower range of
estimated maxima reduces run-to-run variability.

While adaptive batching improves performance over
DFS (equivalent to S = 1) across graph types, the extent
of the improvement varies considerably across graph
types. This is due to two main factors, locality and con-
nectivity.

Locality The graphs used in these experiments are too
large to fit into processor caches. Thus, cache misses
have a huge impact on performance. The Torus graph
is laid out such that each node’s row-wise neighbors
will normally be adjacent to it in memory, and column-
wise neighbors a constant stride away. Thus, traver-
sals of a torus that improve search locality will improve
throughput. This effect can be quantified by compar-
ing the performance of simply accessing all of the nodes
of the graph via all of its edges in some predefined
locality-sensitive versus locality-insensitive order. We
have found the relative improvement of a full scan of
each edge of each node when performed in stride-1 in-
dex order of nodes versus a (wrapped around) stride of
7919 (a prime large enough to minimize cache hits) are
much larger for the (4 dual) Opteron than for the (single
multicore) Niagara (7.4, 1.3 and 1.4 for the Opteron (for
T , K and R) and 2.2, 1.2 and 1.2 for the Niagara). This
is due to the higher relative value of hardware prefetch-
ing across processors on the Opteron when locality pre-
vails. These results independently indicate that the abil-
ity of adaptive batching to better preserve locality of ac-
cess can be either a major or minor source of improve-
ment, depending on graph layout. And for torus graphs,
spanning tree construction throughput exceeds that of
simple locality-insensitive traversal.

Connectivity For densely or regularly connected
graphs, the ability of a task to swap in a partially cre-
ated batch when its initial batch is exhausted increases

the actual nodes processed per task, up from its nomi-
nal value of less than S, to the average number of nodes
that may be traversed, with backup partial buffer size of
at most S, before hitting a dead end. This value varies
significantly across the three graph types we have in-
vestigated. For S = 128, the average values on the
Niagara ranges from 150 for random graph, to 270 for
k-graphs, to 2400 for Torus. (Opteron results are simi-
lar.) As the number of nodes per task increases, so does
throughput: Bypassing the work-stealing queue reduces
per-node overhead. Lower queue access rates in turn
lead to lower contention for threads attempting to steal
work. While these effects are secondary to others de-
scribed above, they appear to account for the remaining
throughput differences across graph types.

Construction of adaptive BFS in the style of our adap-
tive DFS encounters some new obstacles. BFS proceeds
in phases; batching decisions must apply to next phase,
not the current phase. Thus, decisions cannot rely on
current queue state. Instead we employ a predictive
strategy to control batch sizes. During each phase, each
thread uses its estimate of average workload in the previ-
ous phase to control batch size. Although other choices
are possible, we used for the experiments in Figure 1,
constant multiples of the previous estimate, bounded by
minimum and maximum sizes. This requires the multi-
plier to use as an empirically guided tuning parameter.

The results demonstrate improvement over non-
adaptive versions, although less extreme than DFS. We
believe that the differences in magnitude of effects are
mainly due to three factors. First, because BFS re-
quires phased computation, improvements are limited
by underlying barrier synchronization rates (e.g. the
Opteron’s hardware prefetching does not come into
play). Second, our batch size estimation strategy for
BFS cannot be as sensitive to transient dynamic imbal-
ances as DFS. And third, the BFS version does not en-
joy as many of the added locality benefits of DFS in-
place list-swapping. As further evidence of this third
effect, the best tuning threshold was higher, and showed
sharper sensitivity, on the Opteron MP than the Niagara
multicore, which matches the locality and caching pat-
terns discussed above.

We leave for future work the investigation of other
adaptive rules which may yield better performance.

3.4 Results

We present performance data on two machines. Al-
tair (Opteron) is an 8-way Sun Fire V40Z server, run-
ning four dual-core AMD Opteron processors at 2.4GHz
(64KB instruction cache/core, 64KB data cache/core,
16GB physical memory). Moxie (Niagara) is a 32-way
Sun Fire T200 Server running UltraSPARC T1 proces-

8



sor at 1.2 GHz (16KB instruction cache/core, 8KB data
cache/processor, 2MB integrated L2 cache, 32GB phys-
ical memory). (We are in the process of benchmarking
these programs on a 64-way Power5 SMP as well.)

We present results in Figures 1 for runs of BFS
(KGraph, Random) and DFS (KGraph, Torus) on
Opteron and runs of BFS (KGraph, Torus) and DFS
(KGraph, Torus) on Niagara (y-axis: MEPS, x-axis: P),
for 250K, 1M, 4M and 9M vertices.3 We see that on
Opteron XWS code is comparable with Cilk and C code
for BFS (Torus not shown), but substantially outper-
forms them for DFS. On Niagara, XWS code substan-
tially outperforms Cilk and C for all three graphs.4

4 Related work

Adaptive batching bears some similarities to the
steal-half algorithm of [6], and its variants. Both ap-
proaches attempt to cope with non-hierarchical work-
loads for graph problems. In the steal-half algorithm,
each node is queued as its own task; and thieves take
half (or some other percentage) of the nodes available
per steal attempt. In contrast, in our approach, the
tasks are pre-batched, so only one batch is stolen at
a time. This can substantially reduce queue overhead,
contention and data movement costs, but comes with
potential disadvantages because nodes cannot be stolen
while they are being batched, and batches cannot be re-
split. For example, our approach does not allow for a
subset of the nodes from a stolen batch to themselves
be re-stolen by other threads (as does steal-half). How-
ever, queue-sensing adaptation makes consequent im-
pediments to global progress highly unlikely. Because
we adaptively choose batch sizes so that there are always
(during steady state processing) some nodes available to
be stolen from each active thread, imbalanced progress
by any one of them has little impact on the ability of
others to find and steal new work. Additionally, by re-
lating batching rules to sequential processing thresholds
needed for any work-stealing program, our approach
supports simpler empirically guided performance tun-
ing.

5 Conclusion

In this paper we have shown how several graph al-
gorithms can be expressed concisely and elegantly in
X10. These algorithms rely heavily on support for fine-
grained concurrency. The X10 runtime (XWS) imple-
ments fine-grained concurrency through an enhanced

3Note that the number of vertices in a torus is the square of the
torus size.

4Several Cilk runs did not complete successfully and are hence
omitted.

work-stealing scheduler. Specifically the scheduler sup-
ports improperly nested tasks, detection of global ter-
mination, and phased work-stealing. We measure the
performance of spanning tree algorithms implemented
with pseudo-depth-first search and breadth-first search
on two multicore systems. We also present a strategy
to adaptively control the granularity of parallel tasks in
the work-stealing scheme. We show that the XWS pro-
grams scale and exhibit performance comparable with
hand-written C programs.

Acknowledgements We thank Raj Barik for his con-
tributions to the implementation of the C++ version of
XWS. We thank the rest of the X10 team for many dis-
cussions of these issues. This material is based upon
work supported by the Defense Advanced Research
Projects Agency under its Agreement No. HR0011-07-
9-0002.

References

[1] D. A. Bader and G. Cong. A fast, parallel spanning tree algo-
rithm for symmetric multiprocessors (SMPs). In Proceedings of
the 18th International Parallel and Distributed Processing Sym-
posium (IPDPS 2004), Santa Fe, New Mexico, Apr 2004.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: an efficient multithreaded
runtime system. In PPOPP ’95: Proceedings of the fifth ACM
SIGPLAN symposium on Principles and practice of parallel pro-
gramming, pages 207–216, New York, NY, USA, 1995. ACM.

[3] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive
model for graph mining. In Proc. 4th SIAM Intl. Conf. on Data
Mining, April 2004.

[4] M. Frigo, C. E. Leiserson, and K. H. Randall. The implemen-
tation of the cilk-5 multithreaded language. In SIGPLAN Con-
ference on Programming Language Design and Implementation,
pages 212–223, 1998.

[5] J. Greiner. A comparison of data-parallel algorithms for con-
nected components. In Proc. 6th Ann. Symp. Parallel Algorithms
and Architectures (SPAA-94), pages 16–25, Cape May, NJ, June
1994.

[6] D. Hendler and N. Shavit. Non-blocking steal-half work queues.
In PODC ’02: Proceedings of the twenty-first annual symposium
on Principles of distributed computing, pages 280–289, New
York, NY, USA, 2002. ACM.

[7] T.-S. Hsu, V. Ramachandran, and N. Dean. Parallel implementa-
tion of algorithms for finding connected components in graphs.
In S. N. Bhatt, editor, Parallel Algorithms: 3rd DIMACS Imple-
mentation Challenge October 17-19, 1994, volume 30 of DI-
MACS Series in Discrete Mathematics and Theoretical Com-
puter Science, pages 23–41, 1997.

[8] P. Klein and J. Reif. An efficient parallel algorithm for planarity.
J. Comput. Syst. Sci., 37(2):190–246, 1988.

[9] G. L. Miller and V. Ramachandran. Efficient parallel ear decom-
position with applications. Manuscript, UC Berkeley, MSRI,
Jan. 1986.

[10] V. A. Saraswat. X10 Language Report. Technical report, 2004.

9



Figure 1. BFS-K,BFS-R,DFS-K,DFS-T for Opteron and BFS-K,BFS-T,DFS-K,DFS-T for Niagara

10


