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Abstract
A memory model for a concurrent imperative programming lan-
guage specifies which writes to shared variables may be seen by
reads performed by other threads. We present a simple mathemat-
ical framework for relaxed memory models for programming lan-
guages. To instantiate this framework for a specific language, the
designer must choose the notion of atomic steps supported by the
language (e.g. 32-bit reads and writes) and specify how a composite
step may be broken into a sequence of atomic steps (the decompo-
sition rule). This rule determines which sequence of intermediate
writes (if any) are visible to concurrent reads by other threads. Dif-
ferent choices of the rule lead to models which permit a read to re-
turn any value if there is a concurrent write (race), or models which
satisfy a “No Thin Air Read” property. The former is suitable for
languages such as C++ (programs with races have undefined behav-
ior), and the latter for Java. Other intermediate models are possible,
useful and interesting.

We establish that all models in the framework satisfy the Fun-
damental Property of relaxed memory models: programs whose se-
quentially consistent(SC) executions have no races must have have
only SC executions. We show how to define synchronization con-
structs (such as volatiles, of various kinds) in the framework, and
discuss the causality test cases from the Java Memory Model.

1. Introduction
Memory models address a central question of imperative concur-
rency: When can a write done by one thread be read by another?

Leslie Lamport provided a simple answer in [7]. Assume the
state of the memory can be described by an assignment of values
to variables. Assume that exactly one thread is permitted to per-
form exactly one read or write operation in a single step. Then the
possible executions of the program are given by all possible inter-
leavings of the steps of the threads making up the program. This
notion of execution is called Sequential Consistency (SC).
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Unfortunately, SC is not consistent with a wide array of com-
piler optimizations geared towards optimizing the performance of
single-threaded code. Such optimizations often work by rearrang-
ing the code of a single thread while guaranteeing that its in-
put/output (i/o) behavior is unchanged. For any piece of sequential
code s, let us define its i/o function io(s) to be the function from
total stores (mappings that assign a value to every variable) to total
stores given by executing s in the input store and returning the final
store. Consider, for instance, the program P, for r, x and y distinct
variables: x=1; r=y;. An implementation may replace this code
by P′: r=y; x=1 since io(P) = io(P′). However, under SC these
two code fragments are not identical. Consider running it in paral-
lel with Q: r0 = x; if (r0 ==1) y=1. Assume execution
is initiated in a store in which x=0, y=0. Now P | Q may result
in r=1, whereas P′ | Q will never do so. Thus, SC makes it diffi-
cult for multiple threads to perform multiple operations on memory
simultaneously, contrary to what is done by modern architectures.

It should be noted that Shasha and Snir [12] recognized this
problem and proposed solutions involving extra computational
overhead (e.g. the use of memory barriers/fences). There has been
more recent work [13] on compiler analyses to reduce or eliminate
the overhead of implementing SC. At this point we cannot defini-
tively conclude that the overhead can be eliminated for a large class
of programs. Therefore the need to define memory models is real.

1.1 Race-free programs
An important observation underlies nearly all research in this area.
Consider again the program P′ | Q above. Let us say that steps ex-
ecuted by a program are related with a transtive, irreflexive par-
tial order, the happens-before (hb) order [7]. One should interprete
p hb q as saying that the step p must happen “before” the step q in
any execution; i.e. q must observe the store in a state in which p has
been performed. For instance, it is reasonable to require that all the
steps taken by a single thread are totally ordered by hb, and syn-
chronization operations (e.g. lock/unlock) must be used to (dynam-
ically) introduce hb edges between steps of one thread and steps
of another. Now since P′ | Q does not contain any synchroniza-
tion operation, it has a data race: a thread (Q) has a step s (r0=x)
that reads a variable (x) that another thread (P′) writes in a step t
(x=1) without there being an hb-edge from t to s.1 If a program
has no races then a thread T1 does not read the value of a variable
written into by another thread T2 (without using a synchronization
operation). Therefore T1 will be insensitive to code reordering in
T2. Hence one can have one’s cake (SC semantics) and eat it too
(good performance). Therefore it seems reasonable to require that
programs whose SC executions have no races must have only SC
executions. We shall call this property the Fundamental Property.

1 Two steps are in a race if both read or write the same variable x, at least
one of them writes to x and the steps are not ordered by hb.
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This raises the question: Who is responsible for ensuring that a
program is race free . . . the implementation2 or the user?

It is plausible that the implementation should have this respon-
sibility. Race analysis is a difficult technical problem and in some
cases it may be permissible to incur the overhead of runtime detec-
tion of races. This approach is being pursued by some researchers.
The general drawback is that it is hard to design static conditions
that are general enough to recognize that arbitrary clever programs
are race-free.

Indeed, it is often the case that a programmer – aware of the de-
signed control flow of the program – can establish that a particular
program is race-free based on global analysis. Therefore it seems
plausible that the programmer should shoulder the responsibility
of establishing the global property that synchronization-free access
to shared variables will not lead to race conditions. In return, the
implementation should guarantee performance: it should be able
to perform all single thread optimizations as long as they are con-
sistent with explicit synchronization operations introduced by the
programmer (if any). That is, the language should specify – and the
implementation should realize – as weak semantics as possible for
concurrent, unsynchronized read/writes to the same location (per-
forming as many code reorderings as possible). Memory barriers
should be introduced only as required by the semantics of synchro-
nization operations in the language.

How weak is “weak”?

Fundamental Property. For programs without races, the Funda-
mental Property places a lower bound for programs without races.
This property appears to be a reasonable “firewall”: most program-
mers may program in a world in which they write complete, race-
free programs and only worry about SC executions.

We shall require this property for all relaxed memory models.
However stronger versions of this property may be more relevant to
practice, e.g. versions which permit libraries with races in them but
permit the programmer to firewall these races in a way that cannot
interfere with clients of the library. We leave the topic of stronger
versions of the Fundamental Property to future work.

No Thin Air Reads?? For programs with races, different answers
are possible. Consider a language such as C++ in which programs
with races are considered to be erroneous and their behavior is
undefined. In such a case all transformations should be permitted
as long as only programs with races can distinguish between them.
For instance, it should be possible to replace any write x=y with
the i/o equivalent x=42;x=y. Only a program with a race would
be able to see the “out of thin air” write 42.

Such a transformation is not as unreasonable as it may appear.
For instance a vectorizing compiler may wish to pack multiple vari-
ables x,y,z,u into two long words and use vector instructions to
optimize execution. The code x=1;y=1;z=1;u=0may be imple-
mented with the two-instruction sequence x,y,z,u=1,1,1,1;u=0.
Now the implementation has introduced a Thin Air Write u=1
which can be detected by a program with races.

On the other extreme, in a language such as Java, which satisfy
the property that certain data types, such as object references,
behave like capabilities. A piece of code can obtain a reference r to
an object only if it creates the object or it reads a memory location
containing that reference. The integrity of large applications written
in such languages relies on the property that references to objects
can be “closely held”, i.e. held only by a certain collection of
programmer-specified objects. A semantics which permits Thin Air
Reads would permit an attacker to introduce code into the system

2 Throughout this paper, when we say “implementation” we mean the
compiler/run-time system/architecture/hardware – that is, all elements of
the language implementation.

(e.g. with an applet) which may gain access to such a closely held
object via some sequence of seemingly innocuous transformations.

A litmus test for “No Thin Air Reads” is the following test case
from [9]. (For the convenience of the reader we indicate with each
example the corresponding test number in [9] using the (TC xx)
notation. For now, we use an informal notation for programs. We
formalize the syntax in Section 2.)

EXAMPLE 1 (TC 4) See also [8, Fig 2]. Consider the program

x=0;y=0;( r1=x; y=r1 | r2=y; x=r2)

Such a program may not exhibit the behavior r1==r2==1; values
are not allowed to materialize out of thin air.

A related case is exemplified by the following variant of TC 2.

EXAMPLE 2 Consider the program

x=0;y=0;(r1=x; r2=x; y=(r1==r2)?1; | r3=y;x=r3)

Such a program should not exhibit the observation r1=0,r2=1,r3=1,
since the only justification for r3=1 appears to require r1==r2.

Note though that it is not difficult for a compiler to transform
the program above so that the behavior is possible. For instance,
it replaces the first thread with the i/o equivalent code sequence
y=1;r1=x;r2=x. An SC execution yields this result, e.g. via:

x=0;y=0;y=1;r1=x;r3=y;x=r3;r2=x;x=1

In summary, we shall require that a framework for memory
models must be flexible enough to permit the formulation of mem-
ory models that answer these test cases differently. Such a frame-
work permits programming language designers to choose a varia-
tion appropriate for their language.

Inlinability. Another important requirement arises for the mem-
ory model for X10[11,2] like languages that encourage the use of
asynchrony. Any particular implementation is likely to have fewer
hardware threads than the number of activities spawned by the
computation. Therefore it is necessary for the implementation to
ensure that activities are aggregated. Such chunking should not im-
pose any additional runtime cost because of extra synchronization.
Therefore we require that the memory model support the ability to
“inline” activities, wherever this does not cause deadlock.

Usability. Programmers need to use the memory model to under-
stand all possible behaviors of their programs. Programmers under-
stand programs: hence, as far as possible, a memory model should
be presented in terms of a few simple permitted transformations of
programs that generate permitted behaviors. A programmer should
be able to calculate all possible behaviors of a program by system-
atically applying these transformations.

1.2 The basic model
We briefly present the central ideas underlying the memory model,
deferring formal details to the main body of the paper.

The central idea behind the models presented in this paper is
to formalize sequential execution through the notion of a step.
Intuitively, a step is a kind of sequential function which reads and
writes variables in a store, and performs computations on them.
Each programming language will come equipped with its own
notion of primitive, indivisible (atomic) steps (e.g. read or write
a 32-bit variable), and with a translation function which maps
programs in the language to sequences of such primitive steps.
Steps should be closed under sequential composition – if s1, . . . ,sn
are steps, then s1; . . . ;sn should also be a (composite) step – since
sequential programs will execute sequences of such steps.
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Let us say that a partial store is an assignment of values to
variables; such a store is total if it specifies values for all variables.
A crucial move is to consider a step to be a partial write function.
For a sequence of statements s, pw(s) is the partial function from
partial stores to partial stores which is defined on an input store
d only if d specifies values for all the variables that are read by
s, and it maps such a d to the set of writes produced by running
s. Thus a step carries more information than just the i/o function
– intuitively, it records the set of variables read as well as the
set of variables actually written by the program. For instance the
behavior of the program skip; x=x; is different from skip
(even though both have the same i/o function), since the former
can cause a race whereas the latter can not. Similarly the program
x=y;x=z is different from the program x=z (even though both
have the same i/o function) since the former may be involved in
a race with y but the latter can not. Partial write functions make
these extra distinctions while being able to recover the i/o function,
if needed.

With such a view of sequential execution in hand, the notion of
concurrent execution is easy to define: it is a collection (multiset)
of steps with two bits of additional structure. First there must be a
partial order on steps arising from sequentiality of steps executed
by the same thread (the “happens before” order). Second, there
must be a way to reflect links that record which step f was used
to answer the read of a variable x by a step g. The links must satisfy
a consistency condition with the happens before relation, namely,
if a link connects a step f to a step g on a variable x, then either
f and g are unordered or there is no other step between f and g
(in the hb-order) which writes on x. (This condition is called the
hb-consistency condition.)

Transformations. A process is taken to be a set of pomsets
(with links), closed under a certain set of simple transformations.
All models in the RAO (Relaxed Atomic + Ordering) family are
equipped with the transformations improvement (IM), composition
(CO), link(LI), propagation (PR), and augmentation (AU). Ad-
ditionally, each model has a decomposition transformation, DX,
which refines the “weakest” decomposition transformation, DL.

IM permits a step f to be replaced by a step g if io( f ) = io(g),
and g reads and writes fewer variables than f , while respecting all
incoming and outgoing links. IM permits extra reads and writes to
be dropped (e.g. x,y=x,2 to be replaced by y=2). CO permits
two successive steps g;h to be replaced by f = g ◦ h, as long as
incoming and outgoing links and hb edges are respected.

DL permits a step f to be replaced by a pair of atomic steps
g;h as long as f = g ◦ h and incoming and outgoing links are
respected. While this restriction is strong enough to guarantee that
no new races are introduced, it permits the replacement of x=y
by x=42;x=y and hence invalidates Examples 1 and 2. Stronger
decomposition rules are also permitted, however they must all
strengthen DL (i.e. impose extra conditions). For instance, DR
requires additionally that g and h must write any variable at most
once (but may read a variable more than once). Similarly DW
requires that g and h read any variable at most once (but may
write a variable multiple times). DO imposes both conditions. DW
validates 1 and 2; DR validates 2 but not 1; DO validates both.
Other decomposition rules are also possible.

The decomposition rule for a programming language specifies
the intermediate reads and writes that can be performed when de-
composing a composite step. The requirement that decomposition
rules strengthen DL ensures that they cannot introduce new races.

LI is a restricted form of composition that permits a step to
“read” the information in another hb-unordered steps by introduc-
ing a link. Let f and g be two hb-unordered steps. LI is parameter-
ized by a non-empty set of variables W . It links f and g so that in-
formation produced by f on W is used to update the input store into

g. Thus g “sees” the writes on W performed by f . The information
produced by f is not communicated by g to the output. Because of
LI, the same thread can see two different writes if it performs two
different reads of the same variable in sequence, even if no other
thread has taken any action in the meantime.

AU is the only transformation that changes the hb relation be-
tween existing steps. An hb-edge can be added between two steps
provided that the result of the transformation is a valid process.
This transformation is not supported by the Java Memory Model
described in [8].

PR is a generic “whole program” transformation. It permits a
step f to be replaced by a step g provided that f and g are equivalent
in all stores that satisfy a condition c, and it is the case that all SC
executions of the program force the condition c to be true before f
is executed. PR permits whole program analysis to be factored into
the model.

These six transformation rules provide for a rich range of behav-
iors. They can be used to obtain the effect of interleaving “execu-
tion” (e.g. DX,LI) with “compilation” (application of PR, requiring
whole program analysis). Therefore this framework is particularly
appropriate for JITted languages which permit such interleaving of
compilation and execution.

The RAO model does not support the notion of “a central store”
shared by all threads. Therefore the notion of execution must now
explicitly take the partial order into account. But this is easy. Say
that a step s is completed if all its reads have been answered and
so it is “fully-defined.” (We formalize this in Section 2.) Say that a
process is completed if all its steps are completed. An execution of
an AO process P is just any completed process P′ obtained by P by
repeated application of the RAO transformations.

The RAO transformations preserve the fundamental property –
programs without race conditions in SC executions have only SC
executions – and also do not permit “thin air reads.” By design,
they permit a large class of transformations typically implemented
by modern day language implementations. In particular, we show
that they provide a satisfactory account of all the test cases in [9].

On this basis various synchronization operations can be defined.
Volatile variables introduce synchronization conditions. In this pa-
per, we consider three variants of volatility, one introduced in JLS
2 (the weakest), DX-restricted volatility, and JLS 3 volatility.

In this extended abstract, all proofs are elided. We refer the
reader to the full version of the paper for a complete formal de-
velopment.

2. RAO Model
2.1 Preliminaries
First some simple preliminaries to fix intuitions.

Syntax. To make the following discussion concrete, we now
introduce a syntax for steps of single-threaded code. The syntax
is intended to be illustrative; it may be extended routinely with
concepts such as function definitions. It is not intended to be a full-
fledged programming language. Rather it is intended to have a core
set of constructs into which a concrete programming language can
be translated so that its memory model can be defined.

(Variables) x ::= x | . . .
(Condition) c ::= true | false | e==e | c&&c | !c
(Expression) e ::= k | x | c?e :e | c?e | (e)
(Step) s ::= x̄=ē

The language is simple. It permits one-sided and two-sided condi-
tional definition of terms. We will write skip for the step ε = ε.
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Stores. By a partial function from a domain D to a range R
we shall mean a function that is defined from some subset of D,
dom( f ), into R. The restriction of a partial function f to a set V ,
f ↓V , is f restricted to the domain dom(s)∩V .

We fix an infinite set of variables V and a set of values L. A
partial store d is a partial map from V to L, a total store is one
whose domain is V . We designate the set of all partial stores by
Store, and the set of all total stores by TStore. We treat a store
isomorphically as a set of bindings, {x0 = v0,x1 = v1, . . .}.

The union d0 ∪ d1 of two stores d0 and d1 (with disjoint do-
mains) is their union when viewed as a set of bindings. Since two
stores may have conflicting information, their asymmetric union
c[d] (read as: c updated by d) is quite important and is defined as
the set of bindings in d together with the bindings from c for those
variables not bound by d.

We define a binary relation on stores c ≤ d (read as: d extends
c) to hold iff d[c] = d. It is easy to see that ≤ is a partial order. Note
that for distinct stores d,d′, d ≤ d′ implies that dom(d) is strictly
contained in dom(d′).

Functions on stores. Define a partial order on partial functions
over stores by: f ≤ g if dom( f ) ⊆ dom(g) and f (c) ≤ g(c) for all
c ∈ dom( f ). The notion of monotonicity of such functions is stan-
dard. f is monotone if d ∈ dom( f ),e ≥ d implies e ∈ dom( f ) and
f (e) ≥ f (d). For any function f on stores, we define its transi-
tion function f ] by: f ](c) = c[ f (c)]. Unlike f , f ] “flows” the input
through to the output.

A function f is complete if it is defined for every total store.

2.2 Modelling single-threaded code
The fundamental intuition underlying the models is that a piece
of sequential code should be modelled as a step, i.e. a function
from stores to stores. We use partial functions that record for each
partial store d the writes produced by executing s on d. In the rest
of this discussion, given a syntactic step s, we will use [[s]] for its
denotation, i.e. the function associated with the step. On an input
store d, the output store [[s]](d) is defined at variable x only if x is
written by s. Dually, if [[s]](d) is not defined on a given (partial)
store d, then it must mean that s must read some variable that does
not have a binding in d.

EXAMPLE 3 [[x = (false?0)]] is the unique function that is de-
fined on every input (i.e. it does not perform a read) and maps it
to {}. In no store can the assignment to x happen since its pre-
condition, false, can never be satisfied.

[[x = 1]] is the function that is defined on every input and maps
it to {x = 1}.

On any input store d, f = [[x = (y == 1?1)]] is a function
that must definitely read y, hence d must define a value for y.
The function produces a write on x, x=1, iff d(y) = 1. Formally,
d ∈ dom( f ) iff y∈ dom(d). f maps such a d to {x= 1} if d(y) = 1
and to {} otherwise.

[[x = (y == 1?0 : (y == 0?1))]] is defined on input stores d iff
y ∈ dom(d). Such a d is mapped to {x= 0} if d(y) = 1, to {x= 1}
if d(y) = 0 and to {} otherwise.

f = [[x,r = (x! = 42?42),42]] is defined on input stores d iff
x ∈ dom(d). Such a d is mapped to {x= 42,r= 42} if d(x)! = 42
and to {r = 42} if d(x) = 42. Note that for all d ∈ dom( f ) we
have {x = 42} ≤ f ](d) – in some cases because of the write in
f (d) and in some cases because of the flow-through from the input.
Our treatment of steps as partial functions enables us to model this
distinction.

We further restrict our attention to sequential functions that cor-
respond to the execution of single-threaded code. Such code must

perform its basic operations (e.g. reads and writes) in sequence, one
after the other. (It may not perform operations such as a “parallel
or”, which reads reads two variables in parallel, without specifying
the order.) Therefore such sequential functions f have the property
that any store d is either in f ’s domain, or there is a non-empty set
of variables, n( f ,d), all variables in which must be read next by
the function. The formal definition of n( f ,d) is standard [14] and
is elided in this extended abstract.

DEFINITION 1 (STEP). A step is a monotone, sequential, partial
function from finite stores to finite stores.

2.3 Modeling concurrent programs
A concurrent program can now be thought of as a partially ordered
multiset (pomset) of steps. The partial order is called the happens
before order and indicates those steps that are known to occur
before other steps. Formally, an AO process is a initialized pomset
of steps, with a possibly empty set of links:

DEFINITION 2 (SEQUENTIAL COMPOSITION). Given two steps f
and g, their sequential composition g ◦ f is the partial function
defined only on those d s.t. d ∈ dom( f ) and f ](d) ∈ dom(g) and
which maps d to f (d)[g( f ](d))].3

While the definition of a step captures only the actual output
of the step, the use of a step in a sequential composition permits
inputs to traverse untouched to the output of the first step, if they
are needed by the second step. However, the output produced by
the composite is only the (combination of) output produced by each
step – flow through from the input is not counted as output. It is not
hard to see that ( f ◦ g)] = f ] ◦ g]. We now consider examples of
sequential compositions of steps.

EXAMPLE 4 Consider f = [[x = 1]]; [[y = 1]]. It is not difficult
to see that f = [[x,y = 1,1]]. Formally, one uses the definition of
denotation of a step given above, and the definition of composition
of steps (Definition 2) to establish this.

Let us consider a step that reads a variable after conditionally
writing into it: f = [[x = (x == 1?0 : 1)]]; [[y = x]]. Clearly this
should be the same function as [[x,y= (x== 1?0 : 1),(x== 1?0 :
1)]]. Again, this can be established formally.

In general, [[x =c?z]]; [[y= x]] is the same as [[x,y =c?z,c?z : x]].
Specifically [[x = (x! = k?k);y = x]] is the same as [[x,y = (x! =
k?k),x! = k?k : x]], and this is the same as [[x,y = (x! = k?k),k]].

A rule for calculating the sequential composition of steps is formal-
ized in the full version of the paper.

DEFINITION 3 (LINK). Given a pomset of steps P, a link is a
quadruple (s, t,x,v) where s, t ∈ P, x is a variable and v is a value.

DEFINITION 4 (INPUT STORE, LINK-COMPLETED STEP). Given
a set L of links ( ,s,x,v) entering s, in(s) is the store {x =
v | ( ,s,x,v) ∈ L}. When used as a function, in(s) stands for the
function that maps input d to d[{x = v | ( ,s,x,v) ∈ L}].

We say that a step s is complete if in(s) ∈ dom(s).
We define s† (read: link-completed s) as the function s◦ in(s).

EXAMPLE 5 Below we consider a link ( f ,g,x,1).
Let f be [[x = 1]] and g be [[r = x]]. Then g† is [[r = 1]]. f can be used
to answer the read on x in g, but f ’s outputs are not propagated.

3 Note: We have defined ◦ to use application order, f ◦ g = λd.( f (g(x))),
rather than textual order, f ◦g = λd.(g( f (x))).
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Let f be [[x,y = 1,1]] and g be [[r = x]]. Then g† is [[r = 1]]. Irrelevant
information in f is ignored.
Let f be [[x = 1]] and g be [[r,x = x,(x! = 1)?1]]. Then g† is [[r = 1]].
Information in f may force a write of g to be dropped.

DEFINITION 5 (WRITE-BEFORE). Let P be a pomset of steps. For
steps f ,g ∈ P and a variable x, define f wbx g (read: g can read x
from f ) if (i) f writes x, i.e. x ∈ dom( f ({})), and (ii) f and g are
unordered, or f hb g and (iii) there is no other step f ′ between f
and g (in the hb-order) s.t. x ∈ dom( f ′(d)) for any store d.

DEFINITION 6 (AO PROCESS). An AO process (P,Ls) is a par-
tially ordered multiset of steps P, together with a set Ls of links
satisfying:

Link Uniqueness (s, t,x,v),(s′, t,x,v′) ∈ Ls implies s = s′ and t =
t ′.

Link Well-definedness (s, t,x,v) ∈ Ls implies s is complete and
s†(in(s))(x) = v. (Thus s unconditionally produces v for x, given
its input links.)

Link Acyclicity The graph with steps as nodes and edges s → t if
(s, t, , ) ∈ Ls is acyclic.

HB Consistency (s, t,x,v) ∈ Ls implies s wbX t.
Initialization Condition: If a step in P touches a variable x ∈ V

then there is a unique step in P that writes into x, does not read
from x, and hb any other step in P that touches x.

It is useful to visualize an AO process as a directed graph with
nodes labeled with steps and edges representing the hb relation.

DEFINITION 7 (COMPLETED AO PROCESS). An AO process A is
said to be a completed execution if every step of A is complete.

DEFINITION 8 (SC (EXECUTIONS OF ) AO PROCESS). An AO
process A is said to be sequentially consistent (SC) if its hb or-
der is total. An SC execution of an AO process A is any SC AO
process A′ with the same set of steps and link-set as A.

DEFINITION 9 (WELL-BEHAVED AO PROCESS). An AO process
P is well-behaved if all its SC executions are race-free.

Process combinators
AO processes are composed using “;” (sequential composition)
and “|” (parallel composition). ; binds more tightly than |.

P ; Q has the steps of P and Q with the hb order of P and Q
extended to ensure that every step of P hb every step of Q.

P | Q has the steps of P and Q with the hb order of P and Q.
Note that ; is associative, whereas | is commutative and as-

sociative (but not idempotent – the resulting pomset has twice as
many steps). If we use skip to denote the unique process with no
steps, then skip | P = P | skip = P, and skip;P = P;skip = P.

2.4 Transformations of AO processes
In the RAO model, the following transformation rules can be used
to transform an AO process. The transformation is applicable only
if the resulting structure is an AO process.

The transformations IM, AU, CO, DL and LI are local, i.e.
the applicability of the transformation does not depend on whole
program analysis or on the absence or presence of other steps than
the ones named in the transformation.

Below, for a process (P,Ls) with steps p ∈ P, p′ when we say
replace p by p′ while preserving all edges and links we mean that a
new process (P′,Ls′) is created in which P′ is the same as P with p

replaced by p′, every edge (h, p) ∈ hb is replaced by (h, p′), every
edge (p,h) ∈ hb is replaced by (p,h′), every link (q, p,x,v) ∈ Ls
is replaced by (q, p′,x,v), and every link (p,q,x,v)∈ Ls is replaced
by (p′,q,x,v).

2.4.1 Improvement
We say that a step g improves a step f if io(g) = io( f ), dom(g) ⊆
dom( f ), and f ≥ g. The first condition ensures that the behavior
of f and g under sequential (sequentially consistent) execution is
identical. The second condition ensures that extra reads – reads of
variables that do not affect the final result – can be dropped. The
third condition ensures that extra writes – writes of the form x=x
– can be dropped. Let us write [[s]] for the step corresponding to a
piece of sequential code s. Then [[x = y]] improves [[x = z;x = y]]
and [[x = y;z = z]].

DEFINITION 10 (IM). Given an AO process (P,Ls), replace f ∈ P
with a step g while preserving all edges and links, if g improves f ,
and g writes on every variable x for which ( f , ,x, ) ∈ Ls.

2.4.2 Augmentation
DEFINITION 11 (AU). Add an hb-edge between two steps in P
provided that the resulting set is an AO-process.

AU permits the implementation to schedule two otherwise uncon-
strained steps (belonging to separate threads) in a particular order.

2.4.3 Composition
Consider two steps f ;g. We would like to replace them with e =
g ◦ f and move the incoming and outgoing links of f and g to e.
That is, we would like to replace h′ = g† ◦ f † by h = (g◦ f )†.

The following conditions are sufficient. If f and g have incom-
ing links for x, those links must arise from the same step (so they
read the same value and have the same hb relationship with the
link source). This implies in( f )[in(g)] = in(g)[in( f )], or (in terms
of functions) in( f ) ◦ in(g) = in(g) ◦ in( f ). Further, f should pass
through, without modification, any variable for which there is a link
into g. Symmetrically, if f has an outgoing link for x, then g should
pass through the value produced by f on x without modification.
This motivates the following definition.

DEFINITION 12 (CO). Let (P,Ls) be an AO process. Let the im-
mediate hb successor of f in P be g (and only g), and the im-
mediate hb predecessor of g be f (and only f ). Let h = g ◦ f ◦
in(g) ◦ in( f ) and h′ = g ◦ in(g) ◦ f ◦ in( f ). Let f and g satisfy
the property that (i) (s, f ,x,v),(s′,g,x,v′) ∈ Ls implies s = s′ (and
therefore v = v′), (ii) h = h′, (iii) for every x s.t. ( f , ,x,v) ∈ Ls,
h(in( f )[in(g)])(x) = f (in( f )[in(g)])(x).

Replace f and g by e = g ◦ f , replacing each link/edge enter-
ing/exiting f or g by the same link/edge entering/exiting e.

CO permits the implementation to schedule two successive steps in
the hb-order together, treating them as part of the same sequential
step. In the new process e† is the same function as g† ◦ f † in the
old process. Further, the conditions are always satisfied if g has no
incoming links and f has no outgoing links.

2.4.4 Decomposition
DEFINITION 13 (DL). Let (P,Ls) be an AO process, f ∈ P s.t.
f = h ◦ g, and for every incoming (outgoing) x-link for f it is the
case that precisely one of f or g reads (writes) x. (Call that step ix.)

Replace f with g;h. Every edge (e, f )∈ hb is replaced by (e,g)
and every edge ( f ,e) ∈ hb by (h,e). Every link (e, f ,x,v) and
( f ,e,x,v) in Ls is replaced by (e, ix,x,v) and (ix,e,x,v) respectively.

5 2006/9/15



Intuitively, the implementation decides to break up a single step
f into two steps g and h since the behavior of a thread executing f
is indistinguishable (in any race-free context) from the behavior of
the thread executing first g and then h.

DR adds to DL the condition that for any variable x and input
store d, x is in the domain of at most one of the stores g†(d) and
(g† ◦ h†)(d). DW adds to DL the condition that for any variable x
and input store d, x is in at most one of n(g†,d) and n(g† ◦ h†,d).
DO adds both these conditions to DL. We let DX stand for any of
these four decomposition rules.

In combination with CO, DX may change the hb order of
the original program. For instance consider the program fragment
x=1;y=2 . Using CO this may be converted to x,y=1,2 and
then using DX to y=2;x=1. Thus the original hb order is inverted.
Some synchronization constructs (e.g. volatiles) are designed to
ensure that such reordering cannot occur (see Section 4.2); hence
their semantics places restrictions on the application of DX.

DX is also useful in conjunction with LI: sometimes it is possi-
ble to break a function f which performs some reads into f0 and f1
in such a way that f0 does not perform any reads. Now f0 can be
used as a source for a link.

2.4.5 Link
LI is an “inter thread” version of CO.

DEFINITION 14 (LI). Let A = (P,Ls) be a process. Let s, t ∈ P
and x be a variable s.t. (i) s wbX t in P, (ii) s is completed,
(iii) s(in(s))(x) = v, and (iv) x ∈ n(t, in(t)).

Transform A to (P,Ls∪{(s, t,x,v)}).

EXAMPLE 6 (see also example 5) Let f be x=(x!=42)?42
and g r=x be two steps in an AO process (P,Ls) and the only
link entering g is from f and labeled with x. Then r=42 is an im-
provement of g† (since it does not read x. A conditional write in f
may result in an unconditional write by g.

2.4.6 Propagation
By a constraint q on stores we mean a (possibly infinite) set of
stores. A store d satisfies q if d ∈ q. Two functions f0 and f1
on stores are q-equivalent if for Q = q∩ dom( f0), we have Q =
q∩dom( f1), and f0 ↓ Q = f1 ↓ Q.

DEFINITION 15 (PR). Let A = (P,Ls) be a process. Let f ∈ P and
f ′ be a step that is q-equivalent to f , where in all SC-executions of
P, q is true at (before) f .

Replace f by f ′, preserving all edges and links.

(Recall the notion of SC-execution of P is specified in Definition 8.)
PR permits an implementation to perform any global optimization
based on data-flow analyses as long as the analyses consider only
SC executions. Since this transformation effects a global analysis,
it is sensitive to the presence steps in P other than s. One of its uses
is to replace conditional execution with unconditional execution.

We shall see below that typically an application of CO enables
applications of DL. Applications of PR and AU enable applications
of CO. Applications of DL enable applications of AU, etc.

2.4.7 RAO process
DEFINITION 16 (RAO PROCESS). An RAO process is a set of AO
processes closed under CO, DL, IM, LI, PR and AU. For any AO
process P, the smallest (qua set) RAO process containing P is
denoted by RAO(P).

DEFINITION 17 (EXECUTION). An execution of an AO process P
is any complete process P′ ∈ RAO(P).

2.5 Main theorem

Let P,Q be AO processes. Say that P X−→ Q if Q is obtained
from P by the application of a transform X in the set of RAO
transformations. The SC i/o functions of P, sc(P) is the set of
functions io(s0 ◦ . . .◦sn−1) where {s0, . . . ,sn−1} is a totally ordered
extension of P (with steps enumerated in hb -order).

Let clo(P) represent the set of AO processes obtained from P by
zero or more applications of the given transformation. We take the
observations of a process P to be the set of i/o functions of P, io(P)
defined as the set { f | f ∈ sc(Q),Q ∈ clo(P),Qcomplete}. We say
that O ∈ io(P) has a proof of size n if there is an X−→ sequence of
length n from P to a completed process Q such that O ∈ sc(Q).

LEMMA 18. For all AO processes P,Q if P is well-behaved and
P X−→ Q then:

Good behavior is X−→-invariant. Q is well-behaved.

SC behavior is X−→-invariant. sc(Q)⊆ sc(P).

IO behavior is X−→-invariant. io(Q)⊆ sc(P).

THEOREM 19 (FUNDAMENTAL PROPERTY). Let P be a well-
behaved AO process. Then io(P)⊆ sc(P).

3. Examples
We consider some examples. Note: In analyzing the test cases
below we shall usually omit the initial step in the AO process.
Further, we shall not be combining (through CO) two steps both of
which have incoming links. In such cases it is possible to replace t
with t† whenever a new link (s, t,x,v) is added to the link-set.

3.1 Single-thread reordering
EXAMPLE 7 (TC 7) We illustrate the use of CO, DE and AU to
obtain single-thread reordering. Consider the program:

x,y,z=0,0,0;(r1=z; r2=x; y=r2 | r3=y; z=r3; x=1)

Is behavior r1=r2=r3=1 exhibited? Single-thread optimiza-
tion could permit r1=z to be moved to the end of the thread, and
x=1 to the beginning of the thread. The result would then follow
by an SC execution.

Formally this can be analyzed as follows. We show a chain
of AO processes each obtained from the previous by applying
the noted transformation. The last process exhibits the desired
behavior.

Consider the steps r1=z; r2=x; y=r2. These may be col-
lapsed into a single step using CO to yield r1,r2,y=z,x,x.
But this step can be decomposed into r1=z | r2,y=x,x – this
is the code motion discussed above. Similarly r3=y;z=r3;x=1
yields through CO and DE r3,z=y,y | x=1. Now we can in-
terleave the steps in the appropriate order using AU to accomplish
the desired result.

EXAMPLE 8 (TC 2) See also Fig 5 in [8]. This example illus-
trates that CO, DE and AU can simulate the effect of redundant
read elimination. Consider the program:

x,y=0,0; (r1=x;r2=x; y=(r1==r2)?1 | r3=y;x=r3)

This should exhibit r1==r2==r3==1 since redundant read elimi-
nation could result in simplifying r1==r2 to true. Subsequently
y=1 could be moved early.

This reasoning is readily formalized as follows. In each step we
specify only the links added at that step. By convention the links
associated with a step are the union of all the links associated with
previous steps, together with the links added at that step.
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x,y=0,0; (r1,r2=x,x;y=(r1==r2)?1 | r3=y;x=r3) (CO)
x,y=0,0; (r1,r2,y=x,x,1 | r3=y;x=r3) (CO)
x,y=0,0; (s0: r1,r2,y=x,x,1 | s1: r3=1;x=r3)

(LI,(s0,s1))
x,y=0,0; (r1,r2,y=x,x,1 | r3,x=1,1) (CO)

This example shows that the RAO model permits two reads to
be answered by the same write without determining what that
write is. This is just a consequence of CO – by composing all the
steps of Thread 1, we ensure that the reads into r1 and r2 will
be answered from the input store (for the composite step). Hence
they must have the same value. Thus the steps of the first thread are
equivalent (as functions) to the single step r1,r2,y=x,x,1.

EXAMPLE 9 (TC 3) This example illustrates that the application
of CO, DE and AU is not affected by the presence of additional
threads. Consider the program:

x,y=0,0;
(r1=x; r2=x; y=(r1 == r2)?1 | r3=y; x=r3; | x=2

The behavior r1 == r2 == r3 == 1 can be exhibited, using
the same reasoning as in Test 8. The additional thread does not
interfere with the application of CO and LI.

EXAMPLE 10 (TC 17) Consider the AO process:

x,y=0,0; (r3=x; x=(r3!=42)?42; r1=x;y=r1 | r2=y;x=r2)

It should be able to exhibit r1==r2==r3==42 since r3=x;
x=(r3 != 42)?42; r1=x and r3=x; x=(r3 != 42)?42;
r1=42 have identical i/o functions. But the second program can
permit the propagation of r1=42 to the beginning of the program,
resulting in the desired behavior. The RAO analysis mirrors this
reasoning:

r3=x; x=(r3!=42)?42; r1=x;y=r1 | r2=y;x=r2
r3,x=x,(x!=42)?42; r1=x;y=r1 | r2=y;x=r2 (CO)
r3,x,r1=x,(x!=42)?42,42; y=r1 | r2=y;x=r2 (CO#)
r3,x,r1,y=x,(x!=42)?42,42,42 | r2=y;x=r2 (CO)
r3,x=x,(x!=42)?42; s0: r1,y=42,42 | s1: r2=y;x=r2(SE)
r3,x=x,(x!=42)?42; s0: r1,y=42,42 | s1: r2=42;x=r2

(LI, s0->s1)
r3,x=x,(x!=42)?42; so: r1,y=42,42 | s1: r2,x=42,42(CO)
s3: r3=42; s0: r1,y=42,42 | s1: r2,x=42,42

(LI, s1->s3)

(#) In the above example, r3,x,r1=x,x!=42?42,x!=42?42:x
and r3,x,r1=x,x!=42?42,42 – denote the same step. In the
last line the write to x will never be performed by the first step, and
hence the write is dropped.

3.1.1 Inter-thread reasoning – the use of PR

We now consider some examples that illustrate the use of PR.

EXAMPLE 11 (TC 1) This example shows inter-thread reason-
ing – the use of CO,DE,AU,PR. Consider the RAO process gen-
erated from P0: x,y=0,0; (r1=x;y=(r1>=0)?1 | r2=y;
x=r2)

Arguably, RAO(P0) should be able to exhibit r1==r2==1.
The compiler may determine that x and y are always non-negative,
and hence simplify r1 >=0 to true. This allows y=1 to be
moved early. We can formalize this in RAO thus:

r1,y=x,r1>=0?1 | r2=y; x=r2 (CO)
r1,y=x,1 | r2=y; x=r2 (PR#)
r1=x; s1: y=1 | s2: r2=y; x=r2 (SE)
r1=x; s1: y=1 | s2: r2=1; x=r2 (LI, s1->s2)
s0: r1=x; s1: y=1 | s2: r2,x=1,1 (CO)
s0: r1=1; s1: y=1 | s2: r2,x=1,1 (LI, s2->s0)

(PR#) Replace r1,y=x,(x>=0?1) with the x>=0-equivalent
step r1,y=x,1.

EXAMPLE 12 (TC 18) See also [8, Fig 12]. The program:

x,y=0,0; (r3=x; x=(r3==0)?1;r1=x;y=r1 | r2=y;x=r2)

should permit the behavior r1==r2==r3==1. A compiler may
determine through whole program analysis that the only possible
values for x are 0 and 1. Hence if r3 !=0 it must be the case
that r3==1. Hence transforming r1=x into r1=1 is legal from
the viewpoint of a single thread. But this write can be propagated
earlier and SC execution will yield the desired result. The RAO
analysis permits this, following the reasoning above.

r3,x=x,(x==0)?1;r1=x;y=r1|r2=y;x=r2 (CO)
r3,x,r1=x,(x==0)?1,(x==0)?1:x;y=r1|r2=y;x=r2 (CO)
r3,x,r1=x,(x==0)?1,1; y=r1|r2=y;x=r2 (PR;x in {0,1}
r3,x,r1,y=x,(x==0)?1,1,1|r2=y;x=r2 (CO)
r3,x=x,(x==0)?1;s0: r1,y=1,1|s1: r2=y;x=r2 (DE)
r3,x=x,(x==0)?1;s0: r1,y=1,1|s1: r2=1;x=r2 (LI, s0->s1)
s2: r3,x=x,(x==0)?1;s0: r1,y=1,1|s1: r2,x=1,1(CO)
s2: r3=1;s0: r1,y=1,1|s1: r2,x=1,1 (LI, s1->s2)

EXAMPLE 13 (Fig 11 of [8]) This test case is not permitted by
the Java Memory Model described in [8], but is permitted by RAO.
Consider the program:

x,y=0,0; (r3=x; x=(r3==0)?1 | r1=x;y=r1 | r2=y;x=r2)

Test Case 18 can be obtained from this program by inlining Thread
2 after Thread 1.

x,y=0,0; (r3=x; x=(r3==0)?1 | r1=x;y=r1 | r2=y;x=r2)
x,y=0,0; (r3=x; x=(r3==0)?1 ; r1=x;y=r1 | r2=y;x=r2) (AU)

The rest of the derivation follows Case 18.

3.2 Cross-coupling behaviors
We now consider examples that illustrate cross-over.

DEFINITION 20 (CROSS-OVER). Let A be an AO process. A
cross-over is a set of steps in A that forms a loop in the graph
whose nodes are steps and whose edges are links (directed from
source to target) or hb-edges.

Naturally, the presence of races, and the use of LI, is critical in
establishing a cross-over.

EXAMPLE 14 (TC 16) See also Fig 1 in [8]. The program:

x,y=0,0; (r1=x; x=1 | r2=x; x=2)

should be able to exhibit the behavior r1==2; r2==1. RAO
permits it thus:

x,y=0,0; (s0: r1=x; s1: x=1 | s2: r2=x; s3: x=2)
x,y=0,0; (s0: r1=x; s1: x=1 | s2: r2=1; s3: x=2)

(LI, s1->s2)
x,y=0,0; (s0: r1=2; s1: x=1 | s2: r2=1; s3: x=2)

(LI, s3->s0)

The final process illustrates the crossover {s0,s1,s2,s3}.

For an example that shows the interleaving of LI and PR is critical,
we refer the reader to the full paper.
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3.3 No Thin Air Reads behaviors
The following examples involving no thin air reads discuss alterna-
tive definitions of the decomposition rule and their consequences.
This analysis supports the claim that RAO provides a flexible
framework for a programming language designer.

EXAMPLE 15 (TC 4) See also Fig 2 in [8]. Consider the AO
process:

x,y=0,0; (r1=x;y=r1 | r2=y;x=r2)

This process should not exhibit r1==r2==1 even though there is
a race. The value 1 cannot be read from thin air.

LI, PR and AU cannot produce the desired result, as can be
established by systematically applying them.

Now let us consider various decomposition rules. DO (and
hence DL) can establish r1==r2==1 by:

x=0;y=0;(r1=x;y=r1 | r2=y;x=r2)
x=0;y=0;(r1=x;y=1;y=r1 | r2=y;x=r2) (DW)
x=0;y=0;(y=1;r1=x;y=r1 | r2=y;x=r2) (DO)
x=0;y=0;y=1;r2=y;x=r2;r1=x;y=r1 (AU*)
y=1;r2=1;r1=1;x=1 (DO*)

However, DR and DO cannot; there is no way of creating the
phantom write.

EXAMPLE 16 (TC 5) Consider the program:

x,y,z=0,0,0;
(r1=x; y=r1 | r2=y; x=r2 | z=1 | r3=z; x=r3)

The behavior r1==r2==1, r3==0 should be forbidden.
RAO Analysis: As in Test Case 15. The only use of LI will

replace r3=z with r3=1 – and this will not give the desired
result. An exhaustive case analysis shows that none of the other
transformations can produce the desired behavior.

EXAMPLE 17 (TC 10) Consider the AO program P:

x=0;y=0;z=0;
( r1=x;y=(r1==1)?1 | r2=y; x=(r2==1)?1
| z=1 | r3=z;x=(r3==1)?1 )

The behavior r1==r2==1, r3==0 should not be possible.
This is indeed the case. PR cannot be used to discharge any

of the conditionals. CO/DE cannot be used to perform any of the
steps of a thread in parallel since there is a read/write dependency.
AU can be used to totally order these steps (as would be done in an
sc execution). But no sc execution will give the desired result. LI
can be used to replace r3=z with r3=1, but this will not give the
desired result.

EXAMPLE 18 (Fig 10, [8]) Consider the program:

x=0;y=0;z=0;
(z=1 | r1=z;x=(r1==0)?1 | r2=x;y=r2 | r3=y;x=r3)

It should not be possible to observe r1==r2==r3==1, since in
any “execution” which could exhibit this behavior only Threads 3
and 4 write to x and y, and hence they cannot manufacture the
value 1 out of thin air.

The RAO model validates this reasoning. It is not possible to
use PR to reduce x=(r1==0)?1 to x=1 (except by using AU to
place z=1 after the conditional assignment to x – but in that case
r1=z hb z=1 hence r1 can never see the value 1). Without that,
the only way r2 can be 1 is for r1=0 to have been executed before
it, but then r1 !=1.

LI can be used to transfer z=1 into r1=z; to obtain r1=1.
However, this will disable the conditional write to x. The resulting

process cannot produce 1 for r2 or r3 since the only writes
available produce 0.

EXAMPLE 19 (Example 2 revisited) Consider the program

x=0;y=0;(r1=x;r2=x;y=(r1==r2)?1 | r3=y;x=r3)

Such a program should not exhibit r1==0,r2==1,r3==1, since
the only justification for r3=1 appears to require r1==r2.

The use of DR (and hence DL) permits r1==0;r2==1,r3==1.

x=0;y=0;(r1=x;r2=x;y=(r1==r2)?1 | r3=y;x=r3)
x=0;y=0;(r1=x;r2=x;y=1 | r3=y;x=r3) (DR)
x=0;y=0;(r1=x;y=1;r2=x; | r3=y;x=r3) (DO)
x=0;y=0;r1=x;y=1;r3=y;x=r3;r2=x (AU*)
r1=0;y=1;r3=1;x=1;r2=1 (DO)

DW also permits the observation:

x=0;y=0;(r1=x;r2=x;y=(r1==r2)?1 | r3=y;x=r3)
x=0;y=0;(r1=x;r2=x;y=1;y=(r1==r2)?1 | r3=y;x=r3) (DW)
x=0;y=0;(r1=x;y=1;r2=x;y=(r1==r2)?1 | r3=y;x=r3) (DO)
x=0;y=0;r1=x;y=1;r3=y;x=r3;r2=x;y=(r1==r2)?1 (AU*)
r1=0;y=1;r3=1;x=1;r2=1 (DO)

However, DO alone cannot exhibit this behavior.

EXAMPLE 20 (Strength reduction) Consider the program:

x=1; (r=x;s=x;x=2*r | x=3); u=x

Can it yield u=4? Here is a derivation:

x=1;(r=x;s=x;x=2*r | x=3);u=x
x=1;(r=x;s=x;x=r+r | x=3);u=x (DO, x=2*r->x=r=r)
x=1;(r=x;s=x;x=r+s | x=3);u=x (DR)
x=1;(r=x;s=x;x=r+s | x=3);u=x (SE, SE)
x=1;r=x;x=3;s=x;x=r+s;u=x (AU*)
r=1;s=3;x=4;u=4 (DO*)

The use of DR replaces r=x;s=x;x=r+rwith r=x;s=x;x=r+s;
DW and hence DO cannot accomplish this.

4. Synchronization constructs
Synchronization constructs are defined in the RAO model by in-
troducing extra structure to the model, and, if necessary, adding re-
strictions on the application of various transformations. The basic
idea behind synchronization constructs is to introduce mechanisms
by which the programmer may reliably communicate values from
one thread to another without introducing races, i.e. the possibil-
ity of cross-overs. We illustrate by considering different flavors of
volatile variables.

4.1 JLS 2 volatiles
The informal requirement for JLS 2 volatiles is that the read of a
variable x by a step s must be answered by a step t ordered before
s. This can be formalized in RAO as follows. First, we distinguish
between raw variables and volatile variables in the model: the
underlying set V of variables is partitioned into Vr (the subset of raw
variables) and Vv (the subset of volatile variables). An additional
restriction is introduced on the applicability of transformations to
volatile variables:

JLS 2 Volatility Condition: LI may not be used to link
volatile variables.

Therefore the only way to connect a write by a step s to a read
by a different, unordered step t is to use AU to hb-order s before t,
and use CO to compose the steps.
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EXAMPLE 21 (Fig 21) Consider the AO process:

v=0; (v = 1 | r1=v; r2=v)

If v is not volatile this process may exhibit the behavior r1==1,r2==0:

s0: v=0; (s1: v=1 | s2: r1=v; s3: r2=v)
s0: v=0; (s1: v=1 | s2: r1=v; s3: r2=1)(LI, s1->s3)
s0: v=0; (s1: v=1 | s2: r1=0; s3: r2=1) (LI, s0->s2)

However, if v is volatile the application of LI is not permitted. For
r1 to read 1, s1 must be ordered before r2. And it must lie after
s0. But then it will force r2=1.

However, JLS 2 volatiles do not guarantee reliable visibility of
writes to raw variables through a volatile write/read pair.

EXAMPLE 22 (Fig 8) Consider the AO process, with v volatile:

x=0; v=false; (x=1; v=true | r1=v; r2=r1?x )

It is desired that if the write to r2 executes, it writes 1. That is,
a write on a raw variable x can be communicated reliably through
the synchronization offered by the write to the volatile variable v.

Unfortunately, this behavior is not guaranteed. For instance:

x=0; v=false; (x,v=1,true | r1=v; r2=r1?x) (CO)
x=0; v=false; (v=true; x=1 | r1=v; r2=r1?x)(SE)
x=0; v=false; (v=true; r1=v; r2=r1?x; x=1) (AU, AU)
x=0; v=false; (v,r1,r2=true,true,x; x=1) (CO,CO,CO)
x,v,r1,r2=0,true,true,0; x=1 (CO,CO)
x,v,r1,r2=1,true,true,0 (CO)

Examples also demonstrate that JLS 2 volatiles do not satisfy
the Fundamental Property— see full version of the paper.

4.2 DX-restricted Volatiles
The root cause of this problem is that writes to raw variables are
permitted to be reordered with writes to volatile variables. This can
be prevented in RAO by requiring in addition to the condition in
the previous section:

DX Restriction: DX may not be used to decompose f
if f reads or writes a volatile variable.

EXAMPLE 23 (Fig 8, revisited) Consider the AO process, with
v volatile:

x=0; v=false; (x=1; v=true | r1=v; r2=r1?x )

Now the desired behavior (if the write to r2 executes, it writes
1) can be guaranteed. The only way for r1=v to see v=true
is through an AU (preceded optionally by a CO of x=1 and
v=true), followed by a CO. But then it must be the case that
x=1 hb r2=r1?x (or x,v=1,true hb r2=r1?x), and the de-
sired behavior is guaranteed.

4.3 JLS 3 volatiles
EXAMPLE 24 (Fig 22) Consider the process:

x=0; y=0; v=0;
(r1=x;v=0;r2=v;y=1 | r3=y;v=0;r4=v;x=1)

where only the variable v is volatile. The model permits the behav-
ior r1=r3=1 per the following derivation:

x=0; y=0; v=0; (r1=1;v=0;r2=v;y=1 | r3=1;v=0;r4=v;x=1)
(LI,LI)

x=0;y=0;v=0; (r1,v,r2,y=1,0,0,1|r3,v,r4,x=1,0,0,1) (CO*)

The resulting process is a completed execution, with a cross-over.
Note that all the reads of the volatile variable v have not been totally
ordered in the above example. The JLS 3[5] design for volatiles
solves this problem by requiring a a total synchronization order
(SO) on all reads and writes of volatile variable x. Further, there is
required to be an hb-edge between a write of a volatile variable x
and all SO-subsequent reads of x.

Formally, this requirement is implemented in RAO exactly as
stated above. In addition to the requirements of the previous two
sections, we redefine the notion of completed execution as follows:

JLS 3 Volatility Condition: An AO process is a com-
pleted execution iff all its steps are completed and there ex-
ists a total order on all steps that read or write volatile vari-
ables (the synchronization order, SO) and there is an hb-
edge between a write of a volatile variable x and all SO-
subsequent reads of x.

Modulo this change, the notion of SC execution is unchanged from
Definition 8. To satisfy this requirement hb-edges may need to be
added, using AU. 4 With these conditions all three Test Cases – (21,
22 and 24) – are satisfied.

EXAMPLE 25 (Fig 22, revisited) Consider the process:

x=0; y=0; v=0; (r1=x;v=0;r2=v;y=1 | r3=y;v=0;r4=v;x=1)

where only v is volatile. Consider:

x=0;y=0;v=0;
(s0: r1=x; v1: v=0; v2: r2=v; s1: y=1
| s2: r3=y; v3: v=0; v4: r4=v; s3: x=1)

x=0;y=0;v=0;
(s0: r1=1; v1: v=0; v2: r2=v; s1: y=1
| s2: r3=1; v3: v=0; v4: r4=v; s3: x=1)

(LI s3->s0,s1->s2)

The resulting process is not a completed execution. There must be a
total synchronization order on the steps v1,v2,v3,v4 satisfying
the desired condition. Either v2 must lie after v3 or v4 must lie
after v1. Any attempts to add hb-edges to satisfy the condition
above will result in the conditions for one of the links to be violated:
the target of a link will be hb its source. Therefore it is not possible
to complete this process.

4.4 Main theorem
Let V l range over the definitions of volatiles (excluding JLS 2,
which does not satisfy the Fundamental Property, as discussed
above). Let the notion of an RAO(Vl) (AO(Vl)) model stand for
the notion of an RAO (AO) model on top of a set of variables
which are partitioned into raw and volatile variables, and for which
the application of transformations on volatile variables is restricted
per V l, and the definition of completed execution is changed (if
necessary) as per V l. The following results carry over from AO.

LEMMA 21. For all AO(Vl) processes P,Q if P is well-behaved and
P X−→ Q then:

4 The addition of AU edges may not be possible because of the presence
of links. Thus it is possible that starting with an AO process P, there is a
sequence of linkings resulting in a process which cannot be completed into
an execution. A safe strategy is to first introduce AU edges as needed to
satisfy the condition above, and then add LI links.
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Good behavior is X−→-invariant. Q is well-behaved.

SC behavior is X−→-invariant. sc(Q)⊆ sc(P).

IO behavior is X−→-invariant. io(Q)⊆ sc(P).

THEOREM 22 (FUNDAMENTAL PROPERTY). Let P be a well-
behaved AO(Vl) process. Then io(P)⊆ sc(P).

5. Related work
Location consistency model. Location consistency (LC) [3] is
probably the weakest memory model described in the literature.
The distinguishing property of LC is that it does not rely on co-
herence, thus dispensing the need for cache snooping and direc-
tories in a multiprocessor implementation. Gao and Sarkar argue
that the model is equivalent to release consistency (RC) [4] for pro-
grams that are data race free. However, unlike RAO the specifica-
tion of LC is not suited as a basis for a memory model of a high-
level programming language as it does not explicitly define which
re-orderings of access and synchronization statements are permit-
ted [15]. Like LC, RAO does not rely on the coherence assumption.

OpenMP and UPC memory models. The memory models of
OpenMP [6] and UPC [16] have been specified after the original
specification of these language extensions. The fundamental differ-
ence with RAO is as follows: Both OpenMP and UPC are founded
on programming languages with unsafe typing and pointer arith-
metic and thus the requirements that their memory models impose
on programs that are not data race free can be looser. RAO, in con-
trast, is designed for type safe-languages like X10 or Java with the
strong memory safety in mind. The focus of the specification of
the UPC and OpenMP memory model is on the effect and order-
ing guarantees provided by certain accesses with synchronization
semantics and explicit synchronization constructs – not on guaran-
tees that are given in the absences of such synchronization. Both
models allow the introduction of spurious writes, and reads may
observe “out of thin air” values in programs with data races [1].

Java memory model. The RAO model can be thought of as a
“happens before” model, discussed in [8, Section3]. RAO is gen-
erative, given a source program it generates all possible sequences
of executions. In contrast, the methodological stance of [8] is that
a trace must be given beforehand; the memory model is then spec-
ified in terms of which traces are correct. We feel that valuable
information is lost when one moves from a generative model to an
oracle; in particular, the task of specifying the semantics is made
harder.

ASIAN 2004 paper. This paper generalizes and simplifies [10].
The core concept of linking is derived from the action sets of [10].
The “unique valuation” condition has been replaced by the simpler
well-foundedness condition. Conditional linkings have been done
away with in favor of (partial) steps. The formulation of the model
in terms of a set of permitted transformations is new to this paper.

6. Conclusion and future work
We believe this paper is a first step towards establishing a sys-
tematic understanding of weak memory models.On this foundation
several synchronization constructs can be defined. In particular, a
systematic account can be given of locks, and isolated and atomic
execution, in the context of transactional memory. These ideas will
be developed in subsequent work.
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